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Chapter 1

Getting Started

1.1 Introduction
EasyCrypt [BDG+14, BGHZ11] is a framework for interactively finding, constructing, and
machine-checking security proofs of cryptographic constructions and protocols using the code-
based sequence of games approach [BR04, BR06, Sho04]. In EasyCrypt, cryptographic games
and algorithms are modeled as modules, which consist of procedures written in a simple user-
extensible imperative language featuring while loops and random sampling operations. Adversaries
are modeled by abstract modules—modules whose code is not known and can be quantified over.
Modules may be parameterized by abstract modules.

EasyCrypt has four logics: a probabilistic, relational Hoare logic (pRHL), relating pairs of
procedures; a probabilistic Hoare logic (pHL) allowing one to carry out proofs about the probability
of a procedure’s execution resulting in a postcondition holding; an ordinary (possibilistic) Hoare
logic (HL); and an ambient higher-order logic for proving general mathematical facts and
connecting judgments in the other logics. Once lemmas are expressed, proofs are carried out
using tactics, logical rules embodying general reasoning principles, and which transform the
current lemma (or goal) into zero or more subgoals—sufficient conditions for the original lemma
to hold. Simple ambient logic goals may be automatically proved using SMT solvers. Proofs may
be structured as sequences of lemmas, and EasyCrypt’s theories may be used to group together
related types, predicates, operators, modules, axioms and lemmas. Theory parameters that may
be left abstract when proving its lemmas—types, operators and predicates—may be instantiated
via a cloning process, allowing the development of generic proofs that can later be instantiated
with concrete parameters.

1.2 Installing EasyCrypt
EasyCrypt may be found on GitHub.

https://github.com/EasyCrypt/easycrypt

Detailed building instructions for EasyCrypt and its dependencies and supporting tools can be
found in the project’s README file.1

1.3 Running EasyCrypt
EasyCrypt scripts resides in files with the .ec suffix. (As we will see in Chapter 4, EasyCrypt
also has abstract theories, which must be cloned before being used. Such theories reside in files
with the .eca suffix.)

To run EasyCrypt in batch mode, simply invoke it from the shell, giving it an EasyCrypt
script—with suffix .ec—as argument:

1https://github.com/EasyCrypt/easycrypt/blob/1.0/README.md
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easycrypt file.ec

EasyCrypt will display its progress as it checks the file. Information about EasyCrypt’s
command-line arguments can be found in Chapter 6.

When developing EasyCrypt scripts, though, EasyCrypt can be run interactively, as a
subprocess of the Emacs text editor. One’s interaction with EasyCrypt is mediated by Proof
General, a generic Emacs front-end for proof assistants. Upon visiting an EasyCrypt file, the
“Proof-General” tab of the Emacs menu may be used execute the file, step-by-step, as well as to
undo steps, etc. Information about the “EasyCrypt” menu tab may be found in Chapter 6.

A sample EasyCrypt script is shown in Listing 1.1.

(* Load (require) the theories Bool and DBool, and import their
definitions and lemmas into the environment. Bool defines the
exclusive-or operator (^^), and DBool defines the uniform
distribution on the booleans ({0,1}). *)

require import Bool DBool.

(* G1.f() yields a randomly chosen boolean *)

module G1 = {
proc f() : bool = {

var x : bool;
x <$ {0,1}; (* sample x in {0,1} *)
return x;

}
}.

(* G2.f() yields the exclusive-or of two randomly chosen
booleans *)

module G2 = {
proc f() : bool = {

var x, y : bool;
x <$ {0,1}; y <$ {0,1};
return x ^^ y;

}
}.

(* PRHL judgement relating G1.f and G2.f. ={res} means res{1} =
res{2}, i.e., the result of G1.f is equal to (has same distribution
as) result of G2.f *)

lemma G1_G2_f : equiv[G1.f ~ G2.f : true ==> ={res}].
proof.

proc.
(* handle choice of x in G2.f *)
seq 0 1 : true.

rnd {2}. skip. smt.
(* handle choice of x in G1.f / y in G2.f *)
rnd (fun (z : bool) => z ^^ x{2}). skip. smt.

qed.

(* G1.f and G2.f are equally likely to return true: *)

lemma G1_G2_true &m :
Pr[G1.f() @ &m : res] = Pr[G2.f() @ &m : res].

proof.
byequiv.
apply G1_G2_f. trivial. trivial.
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qed.

(* G1.f and G2.f are equally likely to return false: *)

lemma G1_G2_false &m :
Pr[G1.f() @ &m : !res] = Pr[G2.f() @ &m : !res].

proof.
byequiv.
apply G1_G2_f. trivial. trivial.

qed.

Listing 1.1: Sample EasyCrypt Script

As can be inferred from the example, comments begin and end with (* and *), respectively; they
may be nested. Each sentence of an EasyCrypt script is terminated with a dot (period, full
stop). Much can be learned by experimenting with this script, and in particular by executing it
step-by-step in Emacs.

1.4 More Information
More information about EasyCrypt—and about the EasyCrypt Team and its work—may be
found at

https://www.easycrypt.info

The EasyCrypt Club mailing list features discussion about EasyCrypt usage:

https://lists.gforge.inria.fr/mailman/listinfo/easycrypt-club

Support requests should be sent to this list, as answers to questions will be of use to other
members of the EasyCrypt community.

1.5 Bug Reporting
EasyCrypt bugs should be reported using the Tracker:

https://www.easycrypt.info/trac/report

You can log into the Tracker to create tickets or comment on existing ones using any GitHub
account.

1.6 About this Documentation
The source for this document, along with the macros and language definitions used, are available
from its GitHub repository.2 Feel free to use the language definitions to typeset your EasyCrypt-
related documents, and to contribute improvements to the macros if you have any.

This document is intended as a reference manual for the EasyCrypt tool, and not as
a tutorial on how to build a cryptographic proof, or how to conduct interactive proofs. We
provide some detailed examples in Chapter 7, but they may still seem obscure even with a good
understanding of cryptographic theory. We recommend experimenting.

2https://github.com/EasyCrypt/easycrypt-doc
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Chapter 2

Specifications

In this chapter, we present EasyCrypt’s language for writing cryptographic specifications. We
start by presenting its typed expression language, go on to consider its module language for
expressing cryptographic games, and conclude by presenting its ambient logic—which includes
judgments of the HL, pHL and pRHL logics.

EasyCrypt has a typed expression language based on the polymorphic typed lambda calculus.
Expressions are guaranteed to terminate, although their values may be under-specified. Its type
system has:

• several pre-defined base types;

• product (tuple) and record types;

• user-defined abbreviations for types and parameterized types; and

• user-defined concrete datatypes (like lists and trees).

In its expression language:

• one may use operators imported from the EasyCrypt library, e.g., for the pre-defined
base types;

• user-defined operators may be defined, including by structural recursion on concrete
datatypes.

For each type, there is a type of probability distributions over that type.
EasyCrypt’s modules consist of typed global variables and procedures. The body of a

procedure consists of local variable declarations followed by a sequence of statements:

• ordinary assignments;

• random assignments, assigning values chosen from distributions to variables;

• procedure calls, whose results are assigned to variables;

• conditional (if-then-else) statements;

• while loops; and

• return statements (which may only appear at the end of procedures).

A module’s procedures may refer to the global variables of previously declared modules. Modules
may be nested. Modules may be parameterized by abstract modules, which may be used to
model adversaries; and modules types—or interfaces—may be formalized, describing modules
with at least certain specified typed procedures.

EasyCrypt has four logics: a probabilistic, relational Hoare logic (pRHL), relating pairs of
procedures; a probabilistic Hoare logic (pHL) allowing one to carry out proofs about the probability

7



CHAPTER 2. SPECIFICATIONS 8

of a procedure’s execution resulting in a postcondition holding; an ordinary (possibilistic) Hoare
logic (HL); and an ambient higher-order logic for proving general mathematical facts, as well as
for connecting judgments from the other logics

Proofs are carried out using tactics, which is the focus of Chapter 3. EasyCrypt also has
ways (theories and sections) of structuring specifications and proofs, which will be described
in Chapter 4. In Chapter 5, we’ll survey the EasyCrypt Library, which consists of numerous
theories, defining mathematical structures (like groups, rings and fields), data structures (like
finite sets and maps), and cryptographic constructions (like random oracles and different forms
of encryption).

2.1 Lexical Categories
EasyCrypt’s language has a number of lexical categories:

• Keywords. EasyCrypt has the following keywords: abbrev, abort, abstract, admit,
admitted, algebra, alias, apply, as, assert, assumption, async, auto, axiom, axiomatized,
beta, by, byequiv, byphoare, bypr, call, case, cfold, change, class, clear, clone, congr,
conseq, const, cut, debug, declare, delta, do, done, dump, eager, elif, elim, else, end, equiv,
eta, exact, exfalso, exists, expect, export, fel, field, fieldeq, first, fission, forall,
fun, fusion, glob, goal, have, hint, hoare, idtac, if, import, in, include, inductive, inline,
instance, iota, islossless, kill, last, left, lemma, let, local, logic, modpath, module, move,
nosmt, notation, of, op, phoare, pose, Pr, pr_bounded, pragma, pred, print, proc, progress,
proof, prover, qed, rcondf, rcondt, realize, reflexivity, remove, rename, replace, require,
res, return, rewrite, right, ring, ringeq, rnd, rwnormal, search, section, Self, seq, sim,
simplify, skip, smt, solve, sp, split, splitwhile, strict, subst, suff, swap, symmetry, then,
theory, time, timeout, Top, transitivity, trivial, try, type, undo, unroll, var, while, why3,
with, wlog, wp and zeta.

• Identifiers. An identifier is a sequence of letters, digits, underscores (_) and apostrophes
(') that begins with a letter or underscore, and isn’t equal to an underscore or a keyword
other than abort, admitted, async, dump, expect, field, fieldeq, first, last, left, right,
ring, ringeq, solve, strict or wlog.

• Operator names. An operator name is an identifier, a binary operator name, a unary
operator name, or a mixfix operator name.

• Binary operator names. A binary operator name is:

– a nonempty sequence of equal signs (=), less than signs (<), greater than signs (>),
forward slashes (/), backward slashes (\), plus signs (+), minus signs (-), times signs
(*), vertical bars (|), colons (:), ampersands (&), up arrows (^) and percent signs (%);
or

– a backtick mark (`), followed by a nonempty sequence of one of these characters,
followed by a backtick mark; or

– a backward slash followed by a nonempty sequence of letters, digits, underscores and
apostrophes.

A binary operator name is an infix operator name iff it is surrounded by backticks, or begins
with a backslash, or:

– it is neither << nor >>; and
– it doesn’t contain a colon, unless it is a sequence of colons of length at least two; and
– it doesn’t contain =>, except if it is =>; and
– it doesn’t contain |, except if it is ||; and
– it doesn’t contain /, except if it is /, /\, or a sequence of slashes of length at least 3.
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The precedence hierarchy for infix operators is (from lowest to highest):

– => (right-associative);
– <=> (non-associative);
– || and \/ (right-associative);
– && and /\ (right-associative);
– = and <> (non-associative);
– <, >, <= and >= (left-associative);
– - and + (left-associative);
– *, and any nonempty combination of / and % (other than //, which is illegal) (left-

associative);
– all other infix operators except sequences of colons (left-associative);
– sequences of colons of length at least two (right-associative).

• Unary operator names. A unary operator name is a negation sign (!), a nonempty
sequence of plus signs (+), a nonempty sequence of minus signs (-), or a backward slash
followed by a nonempty sequence of letters, digits, underscores and apostrophes. A prefix
operator name is any unary operator name not consisting of either two more plus signs or
two or more minus signs.

• Mixfix operator names. A mixfix operator name is of the following sequences of
characters: `|_|, [], _.[_] or _.[_<−_]. (We’ll see below how they may be used in mixfix
form.)

• Record field projections. A record field projection is an identifier.

• Constructor names. A constructor name is an identifier or a symbolic operator name.

• Type variables. A type variable consists of an apostrophe followed by a sequence of letters,
digits, underscores and apostrophes that begins with a lowercase letter or underscore, and
isn’t equal to an underscore.

• Type or type operator names. A type or type operator name is an identifier.

• Variable names. A variable name is an identifier that doesn’t begin with an uppercase
letter.

• Procedure names. A procedure name is an identifier that doesn’t begin with an uppercase
letter.

• Module names. A module name is an identifier that begins with an uppercase letter.

• Module type names. A module type name is an identifier that begins with an uppercase
letter.

• Lemma and axiom names. A lemma or axiom name is an identifier.

• Theory names. A theory name is an identifier that begins with an uppercase letter.

• Section names. A section name is an identifier that begins with an uppercase letter.

• Memory identifiers. A memory identifier consists of an ampersand followed by either
a nonempty sequence of digits or an identifier whose initial character isn’t an upper case
letter.
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2.2 Script Structure, Name spaces, Printing and Searching
An EasyCrypt script consists of a sequence of steps, terminated by dots (.). Steps may:

• declare types;

• declare operators and predicates;

• declare modules or module types;

• state axioms or lemmas;

• apply tactics;

• require (make available) theories;

• enter or exit theories or sections;

• print types, operators, predicates, modules, module types, axioms and lemmas;

• search for lemmas involving operators.

Operators, predicates, record field projections and type constructors share the same name
space. Lemmas and axioms share the same name space.

To print an entity, one may say:

print type t.
print op f.
print op (+).
print op [-].
print op "_.[_]".
print pred p.
print module Foo.
print module type FOO.
print axiom foo.
print lemma goo.

The entity kind may be omitted, in which case all entities with the given name are printed.
print op and print pred may be used interchangeably, and may be applied to record field
projections and datatype constructors, as well as to operators and predicates. print axiom and
print lemma are also interchangeable. Infix operators must be parenthesized; unary operators
must be enclosed in square brackets; and mixfix operators must be enclosed in double quotation
marks.

To search for axioms and lemmas involving all of a list of operators, one can say

search f.
search (+).
search [-].
search "_.[_]".
search (+) (-). (* axioms/lemmas involving both operators *)

Declared/stated entities may refer to previously declared/stated entities, but not to themselves
or later ones (with the exception of recursively declared operators on datatypes, and to references
to a module’s own global variables).

2.3 Expressions Language
2.3.1 Type Expressions
EasyCrypt’s type expressions are built from type variables, type constructors (or named types)
function types and tuple (product) types. Type constructors include built-in types and user-
defined types, such as record types and datatypes (or variant types). The syntax of type expressions



CHAPTER 2. SPECIFICATIONS 11

τ, σ ::= tyvar type variable
_ anonymous type variable
(τ) parenthesized type
τ −> σ function type
(τ1 * · · · * τn) tuple type
tyname named type
τ tyname applied type constructor
(τ1, . . ., τn) tyname ibid.

Figure 2.1: EasyCrypt’s type expressions

Operator Associativity
type constructor application —

* tuple constructor —
−> function type right

constructions with higher precedences come first

Figure 2.2: Type operators precedence and associativity

is given in Figure 2.1, whereas the precedence and associativity of type operators are given in
Figure 2.2.

It is worth noting that EasyCrypt’s types must be inhabited — i.e. nonempty.

Built-in types EasyCrypt comes with built-in types for booleans (bool), integers (int) and
reals (real), along with the singleton type unit that is inhabited by the single element tt (or ()).

In addition, to every type t is associated the type t distr of (real) discrete sub-distribution. A
discrete sub-distribution over a type t is fully defined by its mass function, i.e. by a non-negative
function from t to R s.t.

∑
x f(x) ≤ 1 — implying that f has a discrete support. When the sum

is equal to 1, we say that we have a distribution. Note that distr is not a proper type on its own,
but a type constructor, i.e. a function from types to types. A proper type is obtained by applying
distr to an actual type, as in int distr or bool distr. See the paragraph on type constructors
for more information.

Function types The type expression τ −> σ denotes the type of total functions mapping
elements of type τ to elements of type σ. Note that −> associates to the right, so that
int −> bool −> real and int −> (bool −> real) denotes the same type.

Tuple (product) types The type expression τ1 * · · · * τn denotes the type of n-tuples whose
elements are resp. of type τi. This includes the type of pairs as well as the type of tuples of
3 elements or more. Note that τ1 * (τ2 * τ3), (τ1 * τ2) * τ3 and τ1 * τ2 * τ3 are all distinct
types. The first two are pair types, whereas the last one is the type of 3-tuples.

Type variables Type variables represent unknown types or type parameters. For example, the
type 'a * 'a is the type the of pair whose elements are of unknown type 'a. Type variables may
be used in type declarations (Section 2.3.2) to define type constructors or in operators/predicates
declarations (Section 2.3.3) to define polymorphic operators/predicates. The special type variable
_ (underscore) represents a type variable whose name is not specified.

Type constructors Type constructors are not type expressions per se, but functions from
types to types. As seen in the built-in section, distr is such a type constructor: when applied to
the type τ , it gives the type τ distr of sub-distributions over τ . Note that the application is in
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postfix form. One other common type constructors is the one list of polymorphic list, the type
expression τ list denoting the type of lists whose elements are of type τ .

Type constructors may depend on several type arguments, i.e. may be of arity strictly
greater than 1. In that case, the type application is curried. For example, the type of finite
map (τ, σ) map (whose keys are of type τ and values of type σ) is constructed from the type
constructor map of arity 2.

By abuse of notations, named types (as bool or int) can be seen as type constructors with no
arguments.

Datatypes and record types There are no expressions for describing datatypes and record
types. Indeed, those are always named and must be defined and named before use. See
Section 2.3.2 for how to define variant and record types.

2.3.2 Type Declarations
Record types may be declared like this:

type t = { x : int; y : bool; }.
type u = { y : real; yy : int; yyy : real; }.

Here t is the type of records with field projections x of type int, and y of type bool. The order
of projections is irrelevant. Different record types can’t use overlapping projections, and record
projections must be disjoint from operators (see below). Records may have any non-zero number
of fields; values of type u are record with three fields. We may also define record type operators,
as in:

type 'a t = { x : 'a; f : 'a −> 'a; }.
type ('a, 'b) u = { f : 'a −> 'b; x : 'a; }.

Then, a value v of type int t would have fields x and f of types int and int −> int, respectively;
and a value v of type (int, bool) u would have fields x and f with types int and int −> bool,
respectively.

Datatypes and datatype operators may be declared like this:

type enum = [ First | Second | Third ].
type either_int_bool = [ First of int | Second of bool ].
type ('a, 'b) either = [ First of 'a | Second of 'b ].
type intlist = [

| Nil
| Cons of (int * intlist) ].

type 'a list = [
| Nil
| Cons of 'a & 'a list ].

Here, First, Second, Third, Nil and Cons are constructors, and must be distinct from all operators,
record projections and other constructors. enum is an enumerated type with the three elements
First, Second and Third. The elements of either_int_bool consist of First applied to an integer,
or Second applied to a boolean, and the datatype operator either is simply its generalization
to arbitrary types 'a and 'b. intlist is an inductive datatype: its elements are Nil and the
results of applying Cons to a pairs of the form (x, ys), where x is an integer and ys is a previously
constructed intlist. Note that a vertical bar (|) is permitted before the first constructor of a
datatype. Finally, list is the generalization of intlist to lists over an arbitrary type 'a, but
with a twist. The use of & means that Cons is “curried”: instead of applying Cons to a pair (x, ys),
one gives it x : 'a and ys : 'a list one at a time, as in Consx ys. Unsurprisingly, more than
one occurrence of & is allowed in a constructor’s definition. E.g., here is the datatype for binary
trees whose leaves and internal nodes are labeled by integers:

type tree = [
| Leaf of int
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| Cons of tree & int & tree
].

Cons tr1 x tr2 will be the tree constructed from an integer x and trees tr1 and tr2. EasyCrypt
must be able to convince itself that a datatype is nonempty, most commonly because it has at
least one constructor taking no arguments, or only arguments not involving the datatype.

Types and type operators that are simply abbreviations for pre-existing types may be declared,
as in:

type t = int * bool.
type ('a, b) arr = 'a −> 'b.

Then, e.g., (int, bool) arr is the same type as int −> bool.
Finally, abstract types and type operators may be declared, as in:

type t.
type ('a, b) u.
type t, ('a, b) u.

We’ll see later how such types and type operators may be used.

2.3.3 Expressions and Operator Declarations
We’ll now survey EasyCrypt’s typed expressions. Anonymous functions are written

fun (x : t1) => e,

where x is an identifier, t1 is a type, and e is an expression—probably involving x. If e has type
t2 under the assumption that x has type t1, then the anonymous function will have type t1 −> t2.
Function application is written using juxtapositioning, so that if e1 has type t1 −> t2, and e2
has type t1, then e1 e2 has type t2. Function application associates to the left, and anonymous
functions extend as far to the right as possible. EasyCrypt infers the types of the bound
variables of anonymous function when it can. Nested anonymous functions may be abbreviated
by collecting all their bound variables together. E.g., consider the expression

(fun (x : int) => fun (y : int) => fun (z : bool) => y) 0 1 false

which evaluates to 1. It may be abbreviated to

(fun (x y : int, z : bool) => y) 0 1 false

or

(fun (x : int) (y : int) (z : bool) => y) 0 1 false

or (letting EasyCrypt carry out type inference)

(fun x y z => y) 0 1 false

In the type inference, only the type of y is determined, but that’s acceptable.
EasyCrypt has let expressions

let x : t = e in e

which are equivalent to

(fun x : t => e)e

As with anonymous expressions, the types of their bound variables may often be omitted, letting
EasyCrypt infer them.

An operator may be declared by specifying its type and giving the expression to be evaluated.
E.g.,
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op x : int = 3.
op f : int −> bool −> int = fun (x : int) (y : bool) => x.
op g : bool −> int = f 1.
op y : int = g true.
op z = f 1 true.

Here f is a curried function—it takes its arguments one at a time. Hence y and z have the same
value: 1. As illustrated by the declaration of z, one may omit the operator’s type when it can be
inferred from its expression. The declaration of f may be abbreviated to

op f (x : int) (y : bool) = x.

or

op f (x : int, y : bool) = x.

Polymorphic operators may be declared, as in

op g ['a, 'b] : 'a −> 'b −> 'a = fun (x : 'a, y : 'b) => x.

or

op g ['a, 'b] (x : 'a, y : 'b) = x.

or

op g (x : 'a, y : 'b) = x.

Here g has all the types formed by substituting types for the types variable 'a and 'b in
'a −> 'b −> 'a. This allows us to use g at different types

op a = g true 0.
op b = g 0 false.

making a and b evaluate to true and 0, respectively.
Abstract operators may be declared, i.e., ones whose values are unspecified. E.g., we can

declare

op x : int.
op f : int −> int.
op g ['a, 'b] : 'a −> 'b −> 'a.

Equivalently, f and g may be declared like this:

op f (x : int) : int.
op g ['a, 'b] (x : 'a, y : 'b) : 'a.

One may declare multiple abstract operators of the same type:

op f, g : int −> int.
op g, h ['a, 'b] : 'a −> 'b −> 'a.

We’ll see later how abstract operators may be used.
Binary operators may be declared and used with infix notation (as long as they are infix

operators). One parenthesizes a binary operator when declaring it and using it in non-infix form
(i.e., as a value). If io is an infix operator and e1, e2 are expressions, then e1 io e2 is translated to
(io) e1 e2, whenever the latter expression is well-typed. E.g., if we declare

op (--) ['a, 'b] (x : 'a) (y : 'b) = x.
op x : int = (--) 0 true.
op x' : int = 0 -- true.
op y : bool = (--) true 0.
op y' : bool = true -- 0.
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then x and x' evaluate to 0, and y and y' evaluate to true.
Unary operators may be declared and used with prefix notation (as long as they are prefix

operators). One (square) brackets a unary operator when declaring it and using it in non-prefix
form (i.e., as a value). If po is a prefix operator and e is an expression, then po e is translated to
[po] e, whenever the latter expression is well-typed. E.g., if we declare

op x : int.
op f : int −> int.
op [!] : int −> int.
op y : int = ! f x.
op y' : int = [!](f x).

then y and y' both evaluate to the result of applying the abstract operator ! of type int −> int
to the result of applying the abstract operator f of type int −> int to the abstract value x of
type int. Function application has higher precedence than prefix operators, which have higher
precedence than infix operators, prefix operators group to the right, and infix operators have the
associativities and relative precedences that were detailed in Section 2.1.

The four mixfix operators may be declared and used as follows. They are (double) quoted
when being declared or used in non-mixfix form (i.e., as values).

• ([]) [] is translated to "[]". E.g., if we declare

op "[]" : int = 3.
op x : int = [].

then x will evaluate to 3.

• (`|_|) If e is an expression, then `|e| is translated to "`|_|" e, as long as the latter
expression is well-typed. E.g., if we declare

op "`|_|" : int −> bool.
op x : bool = "`|_|" 3.
op y : bool = `|3|.

then y will evaluate to the same value as x.

• (_.[_]) If e1, e2 are expressions, then e1.[e2] is translated to "_.[_]" e1 e2, whenever the
latter expression is well-typed. E.g., if we declare

op "_.[_]" : int −> int −> bool.
op x : bool = "_.[_]" 3 4.
op y : bool = 3.[4].

then y will evaluate to the same value as x.

• (_.[_<−_]) If e1, e2, e3 are expressions, e1.[e2 <− e3] is translated to "_.[_<−_]" e1 e2 e3,
whenever the latter expression is well-typed. E.g., if we declare

op "_.[_<−_]" : int −> int −> int −> bool.
op x : bool = "_.[_<−_]" 3 4 5.
op y : bool = 3.[4 <− 5].

then y will evaluate to the same value as x.

In addition, if e1, . . . , en are expressions then

[e1; . . . ; en] is translated to e1 :: . . . :: en :: []

whenever the latter expression is well-typed. The initial argument of "_.[_]" and "_.[_<−_]"
have higher precedence than even function application. E.g., one can’t omit the parentheses in
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op f : int −> int.
op y : bool = (f 3).[4].
op z : bool = (f 3).[4 <− 5].

Some operators are built-in to EasyCrypt, automatically understood by its ambient logic:

op (=) ['a]: 'a −> 'a −> bool.

op [!] : bool −> bool.
op (||) : bool −> bool −> bool.
op (\/) : bool −> bool −> bool.
op (&&) : bool −> bool −> bool.
op (/\) : bool −> bool −> bool.
op (=>) : bool −> bool −> bool.
op (<=>) : bool −> bool −> bool.

op mu : 'a distr −> ('a −> bool) −> real.

The operator = is equality. On the booleans, we have negation !, two forms of disjunction (\/ and
||) and conjunction (/\ and &&), implication (=>) and if-and-only-if (<=>). The two disjunctions
(respectively, conjunctions) are semantically equivalent, but are treated differently by EasyCrypt
proof engine. The associativities and precedences of the infix operators were given in Section 2.1,
and (as a prefix operator) ! has higher precedence than all of them. The expression e1 <> e2 is
treated as !(e1 = e2). <> is not an operator, but it has the precedence and non-associative status
of Section 2.1. The intended meaning of mu d p is the probability that randomly choosing a value
of the given type from the sub-distribution d will satisfy the function p (in the sense of causing it
to return true).

If e is an expression of type int, then e%r is the corresponding real. _%r has higher precedence
than even function application.

If e1 is an expression of type bool and e2, e3 are expressions of some type t, then the conditional
expression

e1 ? e2 : e3

evaluates to e2, if e1 evaluates to true, and evaluates to e3, if e1 evaluates to false. Conditionals
may also be written using if-then-else notation:

if e1 then e2 else e3

E.g., if we write

op x : int = (3 < 4) ? 4 + 7 : (9 - 1).

then x evaluates to 11. The conditional expression’s precedence at its first argument is lower
than function application, but higher than the prefix operators; its second argument needn’t be
parenthesized; and the precedence at its third argument is lower than the prefix operators, but
higher than the infix operators.

For the built-in types bool, int and real, and the type operator distr, the EasyCrypt
Library (see Chapter 5) provides corresponding theories, Bool, Int, Real and Distr. These theories
provide various operations, axioms, etc. To make use of a theory, one must “require” it. E.g.,

require Bool Int Real Distr.

will make the theories just mentioned available. This would allow us to write, e.g.,

op x = Int.(+) 3 4.

making x evaluate to 7. But to be able to use + and the other operators provided by Int in infix
form and without qualification (specifying which theory to find them in), we need to import Int.
If we do
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import Bool Int Real.
op x : int = 3 + 4 - 7 * 2.
op y : real = 5%r * 3%r / 2%r.
op z : bool = x%r >= y.

we’ll end up with z evaluating to false. One may combine requiring and importing in one step:

require import Bool Int Real Distr.

We’ll cover theories and their usage in detail in Chapter 4.
Requiring the theory Bool makes available the value {0,1} of type bool distr, which is the

uniform distribution on the booleans. (No whitespace is allowed in the name for this distribution,
and the 0 must come before the 1.) Requiring the theory Distr make available syntax for the
uniform distribution of integers from a finite range. If e1 and e2 are expressions of type int
denoting n1 and n2, respectively, then [e1..e2] is the value of type int distr that is the uniform
distribution on the set of all integers that are greater-than-or-equal to n1 and less-than-or-equal-to
n2—unless n1 > n2, in which case it is the sub-distribution assigning probability 0 to all integers.

Values of product (tuple) and record types are constructed and destructed as follows:

op x : int * int * bool = (3, 4, true).
op b : bool = x .` 3.
type t = { u : int; v : bool; }.
op y : t = {| v = false; u = 10; |}.
op a : bool = y .` v.

Then, b evaluates to true, and a evaluates to false. Note the field order in the declaration of y
was allowed to be a permutation of that of the record type t.

When we declare a datatype, its constructors are available to us as values. E.g, if we declare

type ('a, 'b) either = [Fst of 'a | Snd of 'b].
op x : (int, bool) either = Fst 10.
op y : int −> (int, bool) either = Fst.
op z : (int, bool) either = y 10.

then z evaluates to the same result as x.
We can declare operators using pattern matching on the constructors of datatypes. E.g.,

continuing the previous example, we can declare and use an operator fst by:

op fst ['a, 'b] (def : 'a) (ei : ('a, 'b) either) : 'a =
with ei = Fst a => a
with ei = Snd b => def.

op l1 : (int, bool) either = Fst 10.
op l2 : (int, bool) either = Snd true.
op m1 : int = fst (-1) l1.
op m2 : int = fst (-1) l2.

Here, m1 will evaluate to 10, whereas m2 will evaluate to -1. Such operator declarations may be
recursive, as long as EasyCrypt can determine that the recursion is well-founded. E.g., here is
one way of declaring an operator length that computes the length of a list:

type 'a list = [Nil | Cons of 'a & 'a list].
op len ['a] (acc : int, xs : 'a list) : int =

with xs = Nil => acc
with xs = Cons y ys => len (acc + 1) ys.

op length ['a] (xs : 'a list) = len 0 xs.
op xs = Cons 0 (Cons 1 (Cons 2 Nil)).
op n : int = length xs.

Then n will evaluate to 3.
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2.4 Module System
2.4.1 Modules
EasyCrypt’s modules consist of typed global variables and procedures, which have different
name spaces. Listing 2.1 contains the definition of a simple module, M, which exemplifies much of
the module language.

require import Int Bool DInterval.

module M = {
var x : int

proc init(bnd : int) : unit = {
x <$ [-bnd .. bnd];

}

proc incr(n : int) : unit = {
x <− x + n;

}

proc get() : int = {
return x;

}

proc main() : bool = {
var n : int;
init(100);
incr(10); incr(-50);
n <@ get();
return n < 0;

}
}.

Listing 2.1: Simple Module

M has one global variable—x—which is used by the procedures of M—init, incr, get and main.
Global variables must be declared before the procedures that use them.

The procedure init (“initialize”) has a parameter (or argument) bnd (“bound”) of type int.
init uses a random assignment to assign to x an integer chosen uniformly from the integers
whose absolute values are at most bnd. The return type of init is unit, whose only element is tt;
this is implicitly returned by init upon exit.

The procedure incr (“increment”), increments the value of x by its parameter n. The procedure
get takes no parameters, but simply returns the value of x, using a return statement—which is
only allowed as the final statement of a procedure.

And the main procedures takes no parameters, and returns a boolean that’s computed as
follows:

• It declares a local variable, n, of type int—local in the sense that other procedures can’t
access or affect it.

• It uses a procedure call to call the procedure init with a bound of 100, causing x to be
initialized to an integer between -100 and 100.

• It calls incr twice, with 10 and then -50.

• It uses a procedure call assignment to call the procedure get with no arguments, and assign
get’s return value to n.

• It evaluates the boolean expression n < 0, and returns the value of this expression as its
boolean result.
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EasyCrypt tries to infer the return types of procedures and the types of parameters and
local variables. E.g., our example module could be written

module M = {
var x : int

proc init(bnd) = {
x <$ [-bnd .. bnd];

}

proc incr(n) = {
x <− x + n;

}

proc get() = {
return x;

}

proc main() = {
var n;
init(100);
incr(10); incr(-50);
n <@ get();
return n < 0;

}
}.

Listing 2.2: Simple Module with Type Inference

As we’ve seen, each declaration or statement of a procedure is terminated with a semicolon. One
may combine multiple local variable declarations, as in:

var x, y, z : int;
var u, v;
var x, y, z : int <− 10;
var x, y, z <− 10;

Procedure parameters are variables; they may be modified during the execution of their procedures.
A procedure’s parameters and local variables must be distinct variable names. The three kinds
of assignment statements differ according to their allowed right-hand sides (rhs):

• The rhs of a random assignment must be a single (sub-)distribution. When choosing from
a proper sub-distribution, the random assignment may fail, causing the procedure call that
invoked it to fail to terminate.

• The rhs of an ordinary assignment may be an arbitrary expression (which doesn’t include
use of procedures).

• the rhs of a procedure call assignment must be a single procedure call.

If the rhs of an assignment produces a tuple value, its left-hand side may use pattern matching,
as in

(x, y, z) <− ...;

in the case where . . . produces a triple.
The two remaining kinds of statements are illustrated in Listing 2.3: conditionals and while

loops.

require import Bool Int DInterval.

module N = {
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proc loop() : int = {
var y, z : int;
y <− 0;
while (y < 10) {

z <$ [1 .. 10];
if (z <= 5) {

y <− y - z;
}
else {

y <− y + (z - 5);
}

}
return y;

}
}.

Listing 2.3: Conditionals and While Loops

N has a single procedure, loop, which begins by initializing a local variable y to 0. It then enters
a while loop, which continues executing until (which may never happen) y becomes 10 or more.
At each iteration of the while loop, an integer between 1 and 10 is randomly chosen and assigned
to the local variable z. The conditional is used to behave differently depending upon whether the
value of z is less-than-or-equal-to 5 or not.

• When the answer is “yes”, y is decremented by z.

• When the answer is “no”, y is incremented by z - 5.

Once (if) the while loop is exited—which means y is now 10 or more—the procedure returns y’s
value as its return value.

When the body of a while loop, or the then or else part of a conditional, has a single statement,
the curly braces may be omitted. E.g., the conditional of the preceding example could be written:

if (z <= 5) y <− y - z;
else y <− y + (z - 5);

And when the else part of a conditional is empty (consists of {}), it may be omitted, as in:

if (z <= 5) y <− y - z;

As illustrated in Listing 2.4, modules may access the global variables, and call the procedures,
of previously declared modules.

require import Bool Int.

module M = {
var x : int

proc f() : unit = {
x <− x + 1;

}
}.

module N = {
var x : int

proc g(n m : int, b : bool) : bool = {
if (b) M.f();
M.x <− M.x + x + n - m;
return 0 < M.x;

}
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proc h = M.f
}.

Listing 2.4: One Module Using Another Module

Procedure g of N both accesses the global variable x of module M (M.x), and calls M’s procedure, f
(M.f). The parameter list of g could equivalently be written:

n : int, m : int, b : bool

A module may refer to its own global variables using its own module name, allowing us to write

proc f() : unit = {
M.x <− M.x + 1;

}

for the definition of procedure M.f. The procedure h of N is an alias for procedure M.f: calling it is
equivalent to directly calling M.f. One declare a module name to be an alias for a module, as in

module L = N.

A procedure call is carried out in the context of a memory recording the values of all global
variables of all declared modules. So all global variables are—by definition—initialized. On the
other hand, the local variables of a procedure start out as arbitrary values of their types. This is
modeled in EasyCrypt’s program logics by our not knowing anything about them. For example,
the probability of X.f()

module X = {
proc f() : bool = {

var b : bool;
return b;

}
}.

returning true is undefined—we can’t prove anything about it. On the other hand, just because
a local variable isn’t initialized before use doesn’t mean the result of its use will be indeterminate,
as illustrated by the procedure Y.f, which always returns 0:

module Y = {
proc f() : int = {

var x : int;
return x - x;

}
}.

2.4.2 Module Types
EasyCrypt’s module types specify the types of a set of procedures. E.g., consider the module
type OR :

module type OR = {
proc init(secret : int, tries : int) : unit
proc guess(guess : int) : unit
proc guessed() : bool

}.

OR describes minimum expectations for a “guessing oracle”—that it provide at least procedures
with the specified types. The order of the procedures in a module type is irrelevant. In a
procedure’s type, one may combine multiple parameters of the same type, as in:

proc init(secret tries : int) : unit
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The names of procedure parameters used in module types are purely for documentation purposes;
one may elide them instead using underscores, writing, e.g.,

proc init(_ : int, _ : int) : unit

Note that module types say nothing about the global variables a module should have. Modules
types have a different name space than modules.

Listing 2.5 contains an example guessing oracle implementation.

module Or = {
var sec : int
var tris : int
var guessed : bool

proc init(secret, tries : int) : unit = {
sec <− secret;
tris <− tries;
guessed <− false;

}

proc guess(guess : int) : unit = {
if (0 < tris) {

guessed <− guessed \/ (guess = sec);
tris <− tris - 1;

}
}

proc guessed() : bool = {
return guessed;

}
}.

Listing 2.5: Guessing Oracle Module

Its init procedure stores the supplied secret in the global variable sec, initializes the allowed
number of guesses in the global variable tris, and initializes the guessed global variable to record
that the secret hasn’t yet been guessed. If more allowed tries remain, the guess procedure updates
guessed to take into account the supplied guess, and decrements the allowed number of tries;
otherwise, it does nothing. And its guessed procedure returns the value of guessed, indicating
whether the secret has been successfully guessed, so far. Or satisfies the specification of the
module type OR, and we can ask EasyCrypt to check this by supplying that module type when
declaring Or, as in Listing 2.6.

module Or : OR = {
var sec : int
var tris : int
var guessed : bool

proc init(secret tries : int) : unit = {
sec <− secret;
tris <− tries;
guessed <− false;

}

proc guess(guess : int) : unit = {
if (0 < tris) {

guessed <− guessed \/ (guess = sec);
tris <− tris - 1;

}
}
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proc guessed() : bool = {
return guessed;

}
}.

Listing 2.6: Guessing Oracle Module with Module Type Check

Supplying a module type doesn’t change the result of a module declaration. E.g., if we had
omitted guessed from the module type OR, the module Or would still have had the procedure
guessed. Furthermore, when declaring a module, we can ask EasyCrypt to check whether it
satisfies multiple module types, as in:

module type A = { proc f() : unit }.
module type B = { proc g() : unit }.
module X : A, B = {

var x, y : int
proc f() : unit = { x <− x + 1; }
proc g() : unit = { y <− y + 1; }

}.

When declaring a module alias, one may ask EasyCrypt to check that the module matches a
module type, as in:

module X' : A, B = X.

Suppose we want to declare a cryptographic game using our guessing oracle, parameterized
by an adversary with access to the guess procedure of the oracle, and which provides two
procedures—one for choosing the range in which the guessing game will operate, and one for
doing the guessing. We’d like to write something like:

module type GAME = {
proc main() : bool

}.

module Game(Adv : ADV) : GAME = {
module A = Adv(Or)
proc main() : bool = { ... }

}.

Thus, the module type ADV for adversaries must be parameterized by an implementation of OR.
Given the adversary procedures we have in mind, the syntax for this is

module type ADV(O : OR) = {
proc chooseRange() : int * int
proc doGuessing() : unit

}.

But this declaration would give the adversary access to all of O’s procedures, which isn’t what we
want. Instead, we can write

module type ADV(O : OR) = {
proc chooseRange() : int * int {}
proc doGuessing() : unit {O.guess}

}.

meaning that chooseRange has no access to the oracle, and doGuessing may only call its guess
procedure. Using this notation, our original attempt would have to be written

module type ADV(O : OR) = {
proc chooseRange() : int * int {O.init O.guess O.guessed}
proc doGuessing() : unit {O.init O.guess O.guessed}

}
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Finally, we can specify that chooseRange must initialize all of the adversary’s global variables
(if any) by using a star annotation:

module type ADV(O : OR) = {
proc * chooseRange() : int * int {}
proc doGuessing() : unit {O.guess}

}.

The enforcement of such checks is not carried out by EasyCrypt’s type checker, but by its logic
(see the apply (p. 60) and rewrite (p. 62) tactics).

The full Guessing Game example is contained in Listing 2.7.

require import Bool Int IntDiv DInterval.

module type OR = {
proc init(secret tries : int) : unit
proc guess(guess : int) : unit
proc guessed() : bool

}.

module Or : OR = {
var sec : int
var tris : int
var guessed : bool

proc init(secret tries : int) : unit = {
sec <− secret;
tris <− tries;
guessed <− false;

}

proc guess(guess : int) : unit = {
if (0 < tris) {

guessed <− guessed \/ (guess = sec);
tris <− tris - 1;

}
}

proc guessed() : bool = {
return guessed;

}
}.

module type ADV(O : OR) = {
proc * chooseRange() : int * int {}
proc doGuessing() : unit {O.guess}

}.

module (SimpAdv : ADV) (O : OR) = {
var range : int * int
var tries : int

proc chooseRange() : int * int = {
range <− (1, 100);
tries <− 10;
return range;

}

proc doGuessing() : unit = {
var x : int;
while (0 < tries) {



CHAPTER 2. SPECIFICATIONS 25

x <$ [range.`1 .. range.`2];
O.guess(x);
tries <− tries - 1;

}
}

}.

module type GAME = {
proc main() : bool

}.

module Game(Adv : ADV) : GAME = {
module A = Adv(Or)

proc main() : bool = {
var low, high, tries, secret : int;
var advWon : bool;
(low, high) <@ A.chooseRange();
if (high - low < 10)

advWon <− false;
else {

tries <− (high - low + 1) %/ 10; (* /% is integer division *)
secret <$ [low .. high];
Or.init(secret, tries);
A.doGuessing();
advWon <@ Or.guessed();

}
return advWon;

}
}.

module SimpGame : GAME = Game(SimpAdv).

Listing 2.7: Full Guessing Game Example

SimpAdv is a simple implementation of an adversary. The inclusion of the constraint SimpAdv : ADV
in SimpAdv’s declaration

module (SimpAdv : ADV) (O : OR) = ...

makes EasyCrypt check that SimpAdv implements the module type ADV: its implementation
of chooseRange doesn’t use O at all; its implementation of doGuessing doesn’t use any of O’s
procedures other than guess; and that chooseRange initializes SimpAdv’s global variables. Its
chooseRange procedure chooses the range of 1 to 100, and initializes global variables recording
this range and the number of guesses it will make (see the code of Game to see why 10 is a sensible
choice). The doGuessing procedure makes 10 random guesses. It would be legal for the parameter
O in SimpAdv’s definition to be constrained to match a module type T providing a proper subset
of OR’s procedures, but that would further limit what procedures of O SimpAdv’s procedures could
call. On the other hand, it would be illegal for T to provide procedures not in OR.

Despite SimpAdv being a parameterized module, to refer to one of its global variables from
another module one ignores the parameter, saying, e.g.,

module X = {
proc f() : int = {

return SimpAdv.tries;
}

}.

On the other hand, to call one of SimpAdv’s procedures, one needs to specify which oracle parameter
it will use, as in:
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module X = {
proc f() : unit = {

SimpAdv(Or).doGuessing();
}

}.

The module Game gives its adversary parameter, Adv, the concrete guessing oracle Or, calling
the resulting module A. Its main function then uses Or and A to run the game.

• It calls A’s chooseRange procedure to get the adversary’s choice of guessing range. If the
range doesn’t have at least ten elements, it returns false without doing anything else—the
adversary has supplied a range that’s too small.

• Otherwise, it uses Or.init to initialize the guessing oracle with a secret that’s randomly
chosen from the range, plus a number of allowed guesses that’s one tenth of the range’s size.

• It then calls A.doGuessing, allowing the adversary to attempt the guess the secret.

• Finally, it calls Or.guessed to learn whether the adversary has guessed the secret, returning
this boolean value as its result.

Finally, the declaration

module SimpGame = Game(SimpAdv).

declares SimpGame to be the specialization of Game to our simple adversary, SimpAdv. When process-
ing this declaration, EasyCrypt’s type checker verifies that SimpAdv satisfies the specification
ADV. The reader might be wondering what—if anything—prevents us writing a version of SimpAdv
that directly accesses/calls the global variables and procedures of Or (or of Game, were SimpAdv
declared after it), violating our understanding of the adversary’s power. The answer is that
EasyCrypt’s type checker isn’t in a position to do this. Instead, we’ll see in the next section
how such constraints are modeled using EasyCrypt’s logic.

2.4.3 Global Variables
The set of all global variables of a module M is the union of

• the set of global variables that are declared in M ; and

• the set of all that global variables declared in other modules such that the variables could be
read or written by a series of procedure calls beginning with a call of one of M ’s procedures.
By “could” we mean the read/write analysis assumes the execution of both branches of
conditionals, the execution of while loop bodies, and the terminal of while loops.

To print the global variables of a module M , one runs:

print glob M.

For example, suppose we make these declarations:

module Y1 = {
var y, z : int
proc f() : unit = { y <− 0; }
proc g() : unit = { }

}.
module Y2 = {

var y : int
proc f() : unit = { Y1.f(); }

}.
module Y3 = {

var y : int
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proc f() : unit = { Y1.g(); }
}.
module type X = {

proc f() : unit
}.
module Z(X : X) = {

var y : int
proc f() : unit = { X.f(); }

}.

Then: the set of global variables of Y1 consists of Y1.y and Y1.z; the set of global variables of
Y2 consists of Y1.y and Y2.y; the set of global variables of Y3 consists of Y3.y; the set of global
variables of Z consists of Z.y; and the set of global variables of Z(Y1) consists of Z.y and Y1.y. In
the case of Z, because its parameter X is abstract, no global variables are obtained from X.

For every module M , there is a corresponding type, globM , where a value of type globM is
a tuple consisting of a value for each of the global variables of M . Nothing can be done with
values of such types other than compare them for equality.

2.5 Logics
2.5.1 Formulas
The formulas of EasyCrypt’s ambient logic are formed by adding to EasyCrypt’s expressions

• universal and existential quantification,

• application of built-in and user-defined predicates,

• probability expressions and lossless assertions, and

• HL, pHL and pRHL judgments,

and identifying the formulas with the extended expressions of type bool. This means we
automatically have all boolean operators as operators on formulas, with their normal precedences
and associativities, including negation

op [!] : bool −> bool.

the two semantically equivalent disjunctions

op (||) : bool −> bool −> bool.
op (\/) : bool −> bool −> bool.

the two semantically equivalent conjunctions

op (&&) : bool −> bool −> bool.
op (/\) : bool −> bool −> bool.

implication

op (=>) : bool −> bool −> bool.

and if-and-only-if

op (<=>) : bool −> bool −> bool.

The quantifiers’ bound identifiers are typed, although EasyCrypt will attempt to infer their
types if they are omitted. Universal and existential quantification are written as

forall (x : t), ϕ

and
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exists (x : t), ϕ

respectively, where the formula ϕ typically involves the identifier x of type t. We can abbreviate
nested universal or existential quantification in the style of nested anonymous functions, writing,
e.g.,

forall (x : int, y : int, z : bool), ...
forall (x y : int, z : bool), ...
forall (x y : int) (z : bool), ...
exists (x : int, y : int, z : bool), ...
exists (x y : int, z : bool), ...
exists (x y : int) (z : bool), ...

Quantification extends as far to the right as possible, i.e., has lower precedence than the binary
operations on formulas.

Abstract predicates may be defined as in:

pred P0.
pred P1 : int.
pred P2 : int & (int * bool).
pred P3 : int & (int * bool) & (real −> int).

P0, P1, P2 and P3 are extended expressions of types bool, int −> bool, int −> int * bool −> bool
and int −> int * bool −> (real −> int) −> bool, respectively. The parentheses are mandatory
in (int * bool) and (real −> int). Thus, if e1, e2 and e3 are extended expressions of types int,
int * bool and real −> int, respectively, then P0, P1 e1, P2 e1 e2 and P3 e1 e2 e3 are formulas.

Concrete predicates are defined in a way that is similar to how operators are declared. E.g.,
if we declare

pred Q (x y : int, z : bool) = x = y /\ z.

or

pred Q (x : int) (y : int) (z : bool) = x = y /\ z.

then Q is an extended expression of type

int −> int −> bool −> bool

meaning that, e.g.,

(fun (b : bool −> bool) => b true) (Q 3 4)

is a formula. And here is how polymorphic predicates may be defined:

pred R ['a, 'b] : ('a, 'a * 'b).
pred R' ['a, 'b] (x : 'a, y : 'a * 'b) = (y.`1 = x).

Extended expressions also include program memories, although there isn’t a type of memories,
and anonymous functions and operators can’t take memories as inputs. If &m is a memory and x
is a program variable that’s in &m’s domain, then x{m} is the extended expression for the value
of x in &m. Quantification over memories is allowed:

forall &m, ϕ

Here, &m ranges over all memories with domains equal to the set of all variables declared as
global in currently declared modules. E.g., suppose we have declared:

module X = { var x : int }.
module Y = { var y : int }.

Then, this is a (true) formula:
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forall &m, X.x{m} < Y.y{m} => X.x{m} + 1 <= Y.y{m}

EasyCrypt’s logics can introduce memories whose domains include not just the global
variables of modules but also:

• the local variables and parameters of procedures; and

• res, whose value in a memory resulting from running a procedure will record the result
(return value) of the procedure.

There is no way for the user to introduce such memories directly. We can’t do anything with
memories other than look up the values of variables in them. In particular, formulas can’t test or
assert the equality of memories.

If M is a module and &m is a memory, then (globM){m} is the value of type globM
consisting of the tuple whose components are the values of all the global variables of M in &m.
(See Subsection 2.4.3 for the definition of the set of all global variables of a module.)

For convenience, we have the following derived syntax for formulas: If ϕ is a formula and &m
is a memory, then ϕ{m} means the formula in which every subterm u of ϕ consisting of a variable
or res or globM , for a module M , is replaced by u{m}. For example,

(Y1.y = Y1.z => Y1.z = Y1.y){m}

expands to

Y1.y{m} = Y1.z{m} => Y1.z{m} = Y1.y{m}

The parentheses are necessary, because _{m} has higher precedence than even function application.
We say that &m satisfies ϕ iff ϕ{m} holds.

Extended expressions also include modules, although there isn’t a type of modules, and
anonymous functions and operators can’t take modules as inputs. Quantification over modules is
allowed. If T is a module type, and M is a module name, then

forall (M <: T), ϕ

means

for all modules M satisfying T , ϕ holds.

Formulas can’t talk about module equality.
There is also a variant form of module quantification of the the form

forall (M <: T{N1,...,Nl}), ϕ

where N1, . . . , Nl are modules, for l ≥ 1. Its meaning is

for all modules M satisfying T whose sets of global variables
are disjoint from the sets of global variables of the Ni, ϕ holds.

Finally, EasyCrypt’s ambient logic has probability expressions, HL, pHL and pRHL
judgments, and lossless assertions:

• (Probability Expressions) A probability expression has the form

Pr[M.p(e1, . . ., en) @ &m :ϕ]

where:

– p is a procedure of module M that takes n arguments, whose types agree with the
types of the ei;

– &m is a memory whose domain is the global variables of all declared modules;
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– the formula ϕ may involve the term res, whose type is M.p’s return type, as well as
global variables of modules.

Occurrences in ϕ of bound identifiers (bound outside the probability expression) whose
names conflict with parameters and local variables of M.p will refer to the bound identifiers,
not the parameters/local variables.
The informal meaning of the probability expression is the probability that running M.p with
arguments e1, . . . , en, and initial memory &m will terminate in a final memory satisfying ϕ.
To run M.p:

– &m is extended to map M.p’s parameters to the ei, and to map the procedure’s local
variables to arbitrary initial values;

– the body of the procedure is run in this extended memory;
– if the procedure returns, its return value will be stored in a component res of the

resulting memory, and the procedure’s parameters and local variables will be removed
from that memory.

If the procedure doesn’t initialize its local variables before using them, the probability
expression may be undefined.

• (HL Judgments) A HL judgment has the form

hoare[M.p :ϕ ==>ψ]

where:

– p is a procedure of module M ;
– the formula ϕ may involve the global variables of declared modules, as well as the

parameters of M.p;
– the formula ψ may involve the term res, whose type is M.p’s return type, as well as

the global variables of declared modules.

Occurrences in ϕ and ψ of bound identifiers (bound outside the judgment) whose names
conflict with parameters and local variables of M.p will refer to the bound identifiers, not
the parameters/local variables.
The informal meaning of the HL judgment is that, for all initial memories &m satisfying ϕ
and whose domains consist of the global variables of declared modules plus the parameters
and local variables of M.p, if running the body of M.p in &m results in termination with a
memory, the restriction of that memory to res and the global variables of declared modules
satisfies ψ.

• (pHL Judgments) A pHL judgment has one of the forms

phoare [M.p :ϕ ==>ψ] < e
phoare [M.p :ϕ ==>ψ] = e
phoare [M.p :ϕ ==>ψ] > e

where:

– p is a procedure of module M ;
– the formula ϕ may involve the global variables of declared modules, as well as the

parameters of M.p;
– the formula ψ may involve the term res, whose type is M.p’s return type, as well as

the global variables of declared modules;
– e is an expression of type real.
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Occurrences in ϕ and ψ and of bound identifiers (bound outside the judgment) whose names
conflict with parameters or local variables of M.p will refer to the bound identifiers, not
the parameters/local variables. e will have to be parenthesized unless it is a constant or
nullary operator.
The informal meaning of the pHL judgment is that, for all initial memories &m satisfying ϕ
and whose domains consist of the global variables of declared modules plus the parameters
and local variables of M.p, the probability that

running the body of M.p in &m results in termination
with a memory whose restriction to res and the global

variables of declared modules satisfies ψ

has the indicated relation to the value of e.

• (pRHL Judgments) A pRHL judgment has the form

equiv[M.p ~N.q :ϕ ==>ψ]

where:

– p is a procedure of module M , and q is a procedure of module N ;
– the formula ϕ may involve the global variables of declared modules, the parameters

of M.p, which must be interpreted in memory &1 (e.g., x{1}), and the parameters of
N.q, which must be interpreted in memory &2;

– the formula ψ may involve the global variables of declared modules, res{1}, which has
the type of M.p’s return type, and res{2}, which has the type of N.q’s return type.

Occurrences in ψ of bound identifiers (bound outside the judgment) whose names conflict
with parameters and local variables of M.p and N.q will refer to the bound identifiers, not
the parameters and local variables, even if they are enclosed in memory references (e.g.,
x{1}). If &1 (resp., &2) is a bound memory (outside the judgment), then all references to &1
(resp., &2) in ϕ and ψ are renamed to use a fresh memory.
The informal meaning of the pRHL judgment is that, for all initial memories &1 whose
domains consist of the global variables of declared modules plus the parameters and local
variables of M.p, for all initial memories &2 whose domains consist of the global variables
of declared modules plus the parameters and local variables of N.q, if ϕ holds, then the
sub-distributions on memories Πp and Πq obtained by running M.p on &1, storing p’s
result in the component res of the resulting memory, from which p’s parameters and local
variables are removed, and running N.q on &2, storing q’s result in the component res of
the resulting memory, from which q’s parameters and local variables are removed, satisfy ψ,
in the following sense. (The probability of a memory in Πp (resp., Πq) is the probability
that p (resp., q) will terminate with that memory. Πp and Πq are sub-distributions on
memories because p and q may fail to terminate.)
We say that (Πp,Πq) satisfy ψ iff there is a function f dividing the probability assigned
to each memory &m by Πp among the memories &n related to it by ψ (&m and &n are
related according to ψ iff ψ holds when references to &1 are replaced by reference to &m,
and reference to &2 are replaced by reference to &n) such that, for all memories &n, the value
assigned to &n by Πq is the sum of all the probabilities distributed to &n by f . (When ψ is
an equivalence like ={res} (i.e., res{1} = res{2}), this is particularly easy to interpret.)

• (Lossless Assertions) A lossless assertion has the form

islosslessM.p

and is simply an abbreviation for
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phoare [M.p : true ==> true] = 1%r

For the purpose of giving some examples, consider these declarations:

module G1 = {
proc f() : bool = {

var x : bool;
x <$ {0,1};
return x;

}
}.

module G2 = {
proc f() : bool = {

var x, y : bool;
x <$ {0,1}; y <$ {0,1};
return x ^^ y; (* ^^ is exclusive or *)

}
}.

Then:

• The expression

Pr[G1.f() @ &m : res]

is the probability that G1.f() returns true when run in the memory &m. (The memory is
irrelevant, and the expression’s value is 1%r / 2%r.)

• The HL judgement

hoare[G2.f : true ==> !res]

says that, if G2.f() halts (which we know it will), then its return value will be false. (This
judgement is false.)

• The pHL judgement

phoare [G2.f : true ==> res] = (1%r / 2%r)

says that the probability of G2.f() returning true is 1%r / 2%r. (This judgement is true.)

• The pRHL judgement

equiv[G1.f ~ G2.f : true ==> res]

says that G1.f() and G2.f() are equally likely to return true as well as equally likely to
return false. (This judgement is true.)

• The lossless assertion

lossless G2.f

says that G2.f() always terminates, no matter what memory it’s run in. (This judgement
is true.)
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2.5.2 Axioms and Lemmas
One states an axiom or lemma by giving a well-typed formula with no free identifiers, as in:

axiom Sym : forall (x y : int), x = y => y = x.
lemma Sym : forall (x y : int), x = y => y = x.

The difference between axioms and lemmas is that axioms are trusted by EasyCrypt, whereas
lemmas must be proved, in the steps that follow. The proof of a lemma has the form

proof.
tactic1. ... tacticn.
qed.

Actually the proof step is optional, but it’s good style to include it. The steps of the proof consist
of tactic applications; but print and search commands are also legal steps. The qed step saves
the lemma, making it available for reuse; it’s only allowed when the proof is complete. If the
name chosen for a lemma conflicts with an already stated axiom or lemma, one only finds this
out upon running qed, which will fail. When the proof for a lemma has a very simple form, the
proof may be included as part of the lemma’s statement:

lemma name : ϕ by [tactic].

or

lemma name : ϕ by [].

In the first case, the proof consists of a single tactic; the meaning of by [] will be described in
Chapter 3.

One may also parameterize an axiom of lemma by the free identifiers of its formula, as in:

lemma Sym (x : int) (y : int) : x = y => y = x.

or

lemma Sym (x y : int) : x = y => y = x.

This version of Sym has the same logical meaning as the previous one. But we’ll see in Chapter 3
why the parameterized form makes an axiom or lemma easier to apply.

Polymorphic axioms and lemmas may be stated using a syntax reminiscent of the one for
polymorphic operators:

lemma Sym ['a] (x y : 'a) : x = y => y = x.
lemma PairEq ['a, 'b] (x x' : 'a) (y y' : 'b) :

x = x' => y = y' => (x, y) = (x', y').

or

lemma Sym (x y : 'a) : x = y => y = x.
lemma PairEq (x x' : 'a) (y y' : 'b) :

x = x' => y = y' => (x, y) = (x', y').

We can axiomatize the meaning of abstract types, operators and relations. E.g., an abstract
type of monoids may be axiomatized by:

type monoid.
op id : monoid.
op (+) : monoid −> monoid −> monoid.
axiom LeftIdentity (x : monoid) : id + x = x.
axiom RightIdentity (x : monoid) : x + id = x.
axiom Associative (x y z : monoid) : x + (y + z) = (x + y) + z.
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Any proofs we do involving monoids will then apply to any valid instantiation of monoid, id and
(+). In Chapter 4, we’ll see how to carry out such instantiations using theory cloning.

One must be careful with axioms, however, because it’s easy to introduce inconsistencies,
allowing one to prove false formulas. E.g., because all types must be nonempty in EasyCrypt,
writing

type t.
axiom Empty : !(exists (x : t), true).

will allow us to prove false.
Axioms and lemmas may be parameterized by memories and modules. Consider the declara-

tions:

module type T = {
proc f() : unit

}.
module G(X : T) = {

var x : int
proc g() : unit = {

X.f();
}

}.

Then lemma Lossless

lemma Lossless (X <: T) : islossless X.f => islossless G(X).g.

which is parameterized by an abstract module X of module type T, says that G(X).g always
terminates, no matter the memory it’s run in, as long as this is true of X.f. Lemma Invar

lemma Invar (X <: T{G}) (n : int) :
islossless X.f =>
phoare [G(X).g : G.x = n ==> G.x = n] = 1%r.

which is parameterized by an abstract module X of module type T that is guaranteed not to
access or modify G.x, and an integer n, says that, assuming X.f is lossless, if G(X).g() is run in a
memory giving G.x the value n, then G(X).g() is guaranteed to terminate in a memory in which
G.x’s value is still n. Finally lemma Invar'

lemma Invar' (X <: T{G}) (n : int) &m :
islossless X.f => G.x{m} = n =>
Pr[G(X).g() @ &m : G.x = n] = 1%r.

which has the parameters of Invar plus a memory &m, says the same thing as Invar, but using a
probability expression rather than a pHL judgement.



Chapter 3

Tactics

Proofs in EasyCrypt are carried out using tactics, logical rules embodying general reasoning
principles, which transform the current lemma (or goal) into zero or more subgoals—sufficient
conditions for the lemma/goal to hold. Simple ambient logic goals may be automatically proved
using SMT solvers.

In this chapter, we introduce EasyCrypt’s proof engine, before describing the tactics for
EasyCrypt’s four logics: ambient, pRHL, pHL and HL.

3.1 Proof Engine
EasyCrypt’s proof engine works with goal lists, where a goal has two parts:

• A context consisting of a

– a set of type variables, and
– an ordered set of assumptions, consisting of identifiers with their types, memories, mod-

ule names with their module types and restrictions, local definitions, and hypotheses,
i.e., formulas. An identifier’s type may involve the type variables, the local definitions
and formulas may involve the type variables, identifiers, memories and module names.

• A conclusion, consisting of a single formula, with the same constraints as the assumption
formulas.

Informally, to prove a goal, one must show the conclusion to be true, given the truth of the
hypotheses, for all valid instantiations of the assumption identifiers, memories and module names.

For example,

Type variables: 'a, 'b

x : 'a
x': 'a
y : 'b
y': 'b
eq_xx': x = x'
eq_yy': y = y'

(x, y) = (x', y')

is a goal. And, in the context of the declarations

module type T = {
proc f() : unit

}.
module G(X : T) = {

35
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var x : int
proc g() : unit = {

X.f();
}

}.

this is a goal:

Type variables: <none>

X : T{G}
n : int
LL: islossless X.f

pre = G.x = n

G(X).g
[=] 1%r

post = G.x = n

The conclusion of this goal is just a nonlinear rendering of the formula

phoare [G(X).g : G.x = n ==> G.x = n] = 1%r.

EasyCrypt’s pretty printer renders pRHL, pHL and HL judgements in such a nonlinear style
when the judgements appear as (as opposed to in) the conclusions of goals.

Internally, EasyCrypt’s proof engine also works with pRHL, pHL and HL judgments
involving lists of statements rather than procedure names, which we’ll call statement judgements,
below. For example, given this declaration

module M = {
proc f(y : int) = {

if (y %% 3 = 1) y <− y + 4;
else y <− y + 2;
return y;

}
}.

this is an pHL statement judgement:

Type variables: <none>

x : int
zor1_x: x = 1 \/ x = 2

Context : M.f

pre = y %% 3 = x

(1--) if (y %% 3 = 1) {
(1.1) y <− y + 4
(1--) } else {
(1?1) y <− y + 2
(1--) }

post = y %% 3 = x %% 2 + 1

The pre- and post-conditions of a statement judgement may refer to the parameters and local
variables of the procedure context of the conclusion—M.f in the preceding example. They may also
refer to the memories &1 and &2 in the case of pRHL statement judgements. When a statement
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judgement appears anywhere other than as the conclusion of a goal, the pretty printer renders it
in abbreviated linear syntax. E.g., the preceding goal is rendered as

hoare[if (x %% 3 = 1) {· · ·} : x %% 3 = n ==> x %% 3 = n %% 2 + 1]

Statement judgements can’t be directly input by the user.
We use the term program to refer to either a procedure appearing in a pRHL, pHL or

HL judgement, or a statement list appearing in a pRHL, pHL or HL statement judgement.
In the case of pRHL (statement) judgements, we speak of the left and right programs, also
using program 1 for the left program, and program 2 for the right one. We will only speak of a
program’s length when it’s a statement list we are referring to. By the empty program, we mean
the statement list with no statements.

When the proof of a lemma is begun, the proof engine starts out with a single goal, consisting
of the lemma’s statement. E.g., the lemma

lemma PairEq ['a, 'b] :
forall (x x' : 'a) (y y' : 'b),
x = x' => y = y' => (x, y) = (x', y').

gives rise to the goal

Type variables: 'a, 'b

forall (x x' : 'a) (y y' : 'b), x = x' => y = y' => (x, y) = (x', y')

For parameterized lemmas, the goal includes the lemma’s parameters as assumptions. E.g.,

lemma PairEq (x x' : 'a) (y y' : 'b) :
x = x' => y = y' => (x, y) = (x', y').

gives rise to

Type variables: 'a, 'b

x : 'a
x': 'a
y : 'b
y': 'b

x = x' => y = y' => (x, y) = (x', y')

EasyCrypt’s tactics, when applicable, reduce the first goal to zero or more subgoals. E.g., if
the first goal is

Type variables: <none>

x : int
zor1_x: x = 1 \/ x = 2

Context : M.f

pre = y %% 3 = x

(1--) if (y %% 3 = 1) {
(1.1) y <− y + 4
(1--) } else {
(1?1) y <− y + 2
(1--) }

post = y %% 3 = x %% 2 + 1
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then applying the if tactic (handle a conditional) reduces (replaces) this goal with the two goals

Type variables: <none>

x : int
zor1_x: x = 1 \/ x = 2

Context : M.f

pre = y %% 3 = x /\ y %% 3 = 1

(1) y <− y + 4

post = y %% 3 = x %% 2 + 1

and

Type variables: <none>

x : int
zor1_x: x = 1 \/ x = 2

Context : M.f

pre = y %% 3 = x /\ y %% 3 <> 1

(1) y <− y + 2

post = y %% 3 = x %% 2 + 1

(leaving the remaining goals, if any, unchanged). If the first goal is

Type variables: <none>

x : int
zor1_x: x = 1 \/ x = 2

forall &hr,
y{hr} %% 3 = x /\ y{hr} %% 3 = 1 => (y{hr} + 4) %% 3 = x %% 2 + 1

then applying the smt tactic (try to solve the goal using SMT provers) solves the goal, i.e.,
replaces it with no subgoals. Applying a tactic may fail; in this case an error message is issued
and the list of goals is left unchanged.

A lemma’s proof may be saved, using the step qed, when the list of goals becomes empty.
And this must be done before anything else may be done.

Remark. In the descriptions of EasyCrypt’s tactics given in the following two sections, unless
otherwise specified, you should assume that the subgoals to which a tactic reduces a goal have
the same contexts as that original goal.

3.2 Matching
Statement patterns are an extension of statements. FiXme Note: Add explanation of new
replace tactic, which uses statement patterns.
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Blocks
{} empty statement
{s} start and end anchors around s
{s] start anchor at the beginning of s
[s} end anchor at the end of s
[s] find s at any position in the statements, without looking into possible branches
<s> find s at any position in the statements, and looking into possible branches
Statements
_ any sequence of statements
n!_ a sequence of n statements
s as X s that is associated with the name X
X interpreted as : _ as X
!s repeat s, can be zero time
?s s is to appear once, or zero time
n!s repeat s n times
[n..m]!s repeat s at least n times, up to m times
[n..]!s repeat s at least n times
[..m]!s repeat s up to m times
∼s apply not greedy carateristics to s if that makes sense
s1 ; s2 s1 followed directly by s2
s1 s2 s1 followed directly by s2
s1 | s2 s1 or s2
_ <- _ ; any affectation
_ <$ _ ; any sample
_ <@ _ ; any procedure call
if ; any if statement
while ; any while statement
if _ bt else bf an if statement where bt is the block matched in the true branch’s body,

and bf the block matched in the false branch’s body
while _ b a while branch where the block b is matched in the body of the loop

3.3 Ambient logic
In this section, we describe the proof terms, tactics and tacticals of EasyCrypt’s ambient logic.

3.3.1 Proof Terms
Formulas introduce identifier and formula assumptions using universal quantifiers and implications.
For example, the formula

forall (x y : bool), x = y => forall (z : bool), y = z => x = z.

introduces the assumptions

x : bool
y : bool
eq_xy : x = y
z : bool
eq_yz : y = z

(where the names of the two formulas were chosen to be meaningful), and has x = z as its
conclusion. We refer to the first assumption of a formula as the formula’s top assumption. E.g.,
the top assumption of the preceding formula is x : bool.

EasyCrypt has proof terms, which partially describe how to prove a formula. Their syntax
is described in Figure 3.1, where X ranges over lemma (or formula assumption) names. A proof
term for a lemma (or formula assumption) X has components corresponding to the assumptions
introduced by X. A component corresponding to a variable consists of an expression of the
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p ::= _ proof hole
(X, q1, . . ., qn) lemma application

q ::= e expression
p proof term

Figure 3.1: Proof Terms

variable’s type. The proof term is explaining how the instantiation of the lemma’s conclusion
with these expressions may be proved. A formula component consists of a proof term explaining
how the instantiation of the formula may be proved. Proof holes will get turned into subgoals
when a proof term is used in backward reasoning, e.g., by the apply (p. 60) tactic. FiXme Note:
Need explanation of how a proof term may be used in forward reasoning.

Consider, e.g., the following declarations and axioms

pred P : int.
pred Q : int.
pred R : int.
axiom P (x : int) : P x.
axiom Q (x : int) : P x => Q x.
axiom R (x : int) : P(x + 1) => Q x => R x.

Then, given that x : int is an assumption,

(R x (P(x + 1)) (Q x (P x)))

is a proof term proving the conclusion R x. And

(R x _ (Q x _))

is a proof term that turns proofs of P(x + 1) and P x into proofs of R x. When used in backward
reasoning, it will reduce a goal with conclusion R x to subgoals with conclusions P(x + 1) and
P x. FiXme Note: Can it be used in forward reasoning?

Some of a proof term’s expressions may be replaced by _, asking EasyCrypt to infer them
from the context. Going even further, one may abbreviate a one-level proof term all of whose
components are _ to just its lemma name. For example, we can write R for (R _ _ _). When used
in backward reasoning, it will reduce a goal with conclusion R x to subgoals with conclusions
P(x + 1) and Q x. FiXme Note: In forward reasoning they aren’t equivalent—why?

3.3.2 Occurrence Selectors and Rewriting Directions
Some ambient logic tactics use occurrence selectors to restrict their operation to certain occurrences
of a term or formula in a goal’s conclusion or formula assumption. The syntax is {i1, . . ., in},
specifying that only occurrences i1 throught in of the term/formula in a depth-first, left-to-right
traversal of the goal’s conclusion or formula assumption should be operated on. Specifying
{-i1, . . ., in} restricts attention to all occurrences not in the following list. They may also be
empty, meaning that all applicable occurrences should be operated on.

Some ambient logic tactics use rewriting directions, dir , which may either be empty (meaning
rewriting from left to right), or -, meaning rewriting from right to left.

3.3.3 Introduction and Generalization
Introduction. One moves the assumptions of a goal’s conclusion into the goal’s context using
the introduction tactical. This tactical uses introduction patterns, which are defined in Figure 3.2.
In this definition, occ ranges over occurrence selectors, and dir ranges over directions—see
Subsection 3.3.2).

If a list ι1, . . . , ιn of introduction patterns consists entirely of // (apply the trivial (p. 55)
tactic), /= (apply the simplify (p. 56) tactic) and //= (apply the simplify and then trivial),
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ι ::= b name
_ no name
+ auto revert
? find name
occ −> rewrite using assumption
occ <− rewrite in reverse using assumption
−>> substitute using assumption
<<− substitute in reverse using assumption
/p replace assumption by applying proof term
{a1 · · · an} clear introduced assumptions
/= simplify
// trivial
//= simplify then trivial
dir occ @/op unfold definition of operator
[ι11 · · · ι1m1 | · · · | ιr1 · · · ιrmr ] case pattern

b ::= x identifier
M module name
&m memory name

Figure 3.2: Introduction Patterns

then applying ι1, . . . , ιn to a list of goals G1, . . . , Gm is done by applying the tactics corresponding
to the ιi in order to each Gj , causing some of the goals to be solved and thus disappear and some
of the goals to be simplified.

τ=> ι1 · · · ιn⊚

Runs the tactic τ , matching the resulting goals, G1, . . . , Gl, with the introduction patterns
ι1, . . . , ιn:

• Suppose k is such that all of ι1, . . . , ιk−1 are //, /= and //=, and either k > n or ιk is not
//, /= or //=.

• Let G′
1, . . . , G

′
l′ be the goals resulting from applying ι1, . . . , ιk−1 to G1, . . . , Gl.

• If l′ = 0, the tactical produces no subgoals.

• Otherwise, if k > n, the tactical’s result is G′
1, . . . , G

′
l′ .

• Otherwise, if ιk is not a case pattern, each subgoal G′
i is matched against ιk, . . . , ιn by the

procedure described below, with the resulting subgoals being collected into a list of goals
(maintaining order viz a viz the indices i) as the tactical’s result.

• Otherwise, ιk is a case pattern [ι11 · · · ι1m1 | · · · | ιr1 · · · ιrmr ].

• If τ is not equivalent to idtac (p. 47), the tactic fails unless r = l′, in which case each G′
i is

matched against
ιi1 · · · ιimi

ιk+1 · · · ιn
by the procedure described below, with the resulting subgoals being collected into the
tactical’s result.

• Otherwise, τ is equivalent to idtac (p. 47) (and so l′ = 1). In this case G′
1 is matched

against ιk, . . . , ιn by the procedure described below, with the resulting subgoals being
collected into a list of goals as the tactical’s result.
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Matching a single goal against a list of patterns: To match a goal G against a list of
introduction patterns ι1, . . . , ιn, the introduction patterns are processed from left-to-right, as
follows:

• (b) The top assumption (universally quantified identifier, module name or memory; or left
side of implication) is consumed, and introduced with this name. Fails if the top assumption
has neither of these forms.

• (b !) Same as the preceding case, except that b is used as the base of the introduced name,
extending the base to avoid naming conflicts.

• (_) Same as the preceding case, except the assumption is introduced with an anonymous
name (which can’t be uttered by the user).

• (+) Same as the preceding case, except that after a branch of the procedure completes,
yielding a goal, the assumption will be reverted, i.e., un-introduced (using a universal
quantifier or implication as appropriate).

• (?) Same as the preceding case, except EasyCrypt chooses the name by which the
assumption is introduced (using universally quantified names as assumption bases).

• (occ −>) Consume the top assumption, which must be an equality, and use it as a left-to-
right rewriting rule in the remainder of the goal’s conclusion, restricting rewriting to the
specified occurrences of the equality’s left side.

• (occ <−) The same as the preceding case, except the rewriting is from right-to-left.

• (−>>) The same as −>, except the consumed equality assuption is used to perform a
left-to-right substitution in the entire goal, i.e., in its assumptions, as well as its conclusion.

• (<<−) The same as the preceding case, except the substitution is from right-to-left.

• (/p) Replace the top assumption by the result of applying the proof term p to it using
forward reasoning.

• ({a1 · · · an}) Doesn’t affect the goal’s conclusion, but clears the specified assumptions, i.e.,
removes them. Fails if one or more of the assumptions can’t be cleared, because a remaining
assumption depends upon it.

• (/=) Apply simplify (p. 56) to goal’s conclusion.

• (//) Apply trivial (p. 55) to goal’s conclusion; this may solve the goal, i.e., so that the
procedure’s current branch yields no goals.

• (/=) Apply simplify (p. 56) and then trivial (p. 55) to goal’s conclusion; this may solve
the goal, so that the procedure’s current branch yields no goals.

• (dir occ @/op) Unfold (fold, if the direction is -) the definition of operator op at the specified
occurrences of the goal’s conclusion. See the rewrite (p. 62) tactic for the details.

• ([ι11 · · · ι1m1 | · · · | ιr1 · · · ιrmr ])

– If r = 0, then the top assumption of the goal is destructed using the case (p. 64) tactic,
the resulting goals are matched against ι2, . . . , ιn, and their subgoals are assembled
into a list of goals.

– Otherwise r > 0. The goal’s top assumption is destructed using the case (p. 64) tactic,
yielding subgoals H1, . . . Hp. If p ̸= r, the procedure fails. Otherwise each subgoal Hi

is matched against
ιi1 · · · ιimiι2 · · · ιn

with the resulting goals being collected into a list as the procedure’s result.
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The following examples use the tactic move (p. 47), which is equivalent to idtac (p. 47). In its
simplest form, the introduction tactical simply gives names to assumptions. For example, if the
current goal is

Type variables: <none>

forall (x y : int), x = y => forall (z : int), y = z => x = z

then running

move=> x y eq_xy z eq_yz.

produces

Type variables: <none>

x : int
y : int
eq_xy: x = y
z : int
eq_yz: y = z

x = z

Alternatively, we can use the introduction pattern ? to let EasyCrypt choose the assumption
names, using H as a base for formula assumptions and starting from the identifier names given in
universal quantifiers:

move=> ? ? ? ? ?.

produces

Type variables: <none>

x : int
y : int
H : x = y
z : int
H0: y = z

x = z

To see how the −> rewriting pattern works, suppose the current goal is

Type variables: <none>

x : int
y : int

x = y => forall (z : int), y = z => x = z

Then running

move=> −>.

produces

Type variables: <none>

x : int
y : int

forall (z : int), y = z => y = z
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Alternatively, one can introduce the assumption x = y, and then use the −>> substitution pattern:
if the current goal is

Type variables: <none>

x : int
y : int
H1: x = y
z : int

y = z => x = z

then running
move=> −>>.

produces
Type variables: <none>

x : int
y : int
z : int
H1: x = z

x = z

To see how a view may be applied to a not-yet-introduced formula assumption, suppose the
current goal is

Type variables: <none>

Sym: forall (u v : int), u = v => v = u
x : int
y : int

x = y => forall (z : int), y = z => x = z

Then running
move=> /Sym.

produces
Type variables: <none>

Sym: forall (u v : int), u = v => v = u
x : int
y : int

y = x => forall (z : int), y = z => x = z

And then running
move=> −>.

on this goal produces
Type variables: <none>

Sym: forall (u v : int), u = v => v = u
x : int
y : int

forall (z : int), x = z => x = z
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Finally, let’s see examples of how a disjunction assumption may be destructed, either using the
case tactic followed by a case introduction pattern, or by making the case introduction pattern
do the destruction. For the first case, if the current goal is

Type variables: <none>

x : bool
y : bool

x \/ y =>
(x => forall (z : bool), P x z) =>
(y => forall (z w : bool), Q y z w) =>
(forall (z : bool), P x z) \/ forall (z w : bool), Q y z w

then running

move=> [Hx HP _ | Hy _ HQ].

produces the two goals

Type variables: <none>

x : bool
y : bool
Hx: x
HP: x => forall (z : bool), P x z
_ : y => forall (z w : bool), Q y z w

(forall (z : bool), P x z) \/ forall (z w : bool), Q y z w

and

Type variables: <none>

x : bool
y : bool
Hy: y
_ : x => forall (z : bool), P x z
HQ: y => forall (z w : bool), Q y z w

(forall (z : bool), P x z) \/ forall (z w : bool), Q y z w

And for the second case, if the current goal is

Type variables: <none>

x : bool
y : bool

x \/ y =>
(x => forall (z : bool), P x z) =>
(y => forall (z w : bool), Q y z w) =>
(forall (z : bool), P x z) \/ forall (z w : bool), Q y z w

then running

case=> [Hx HP X | Hy X HQ] {X}.

produces the two goals

Type variables: <none>

x : bool
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y : bool
Hx: x
HP: x => forall (z : bool), P x z

(forall (z : bool), P x z) \/ forall (z w : bool), Q y z w

and

Type variables: <none>

x : bool
y : bool
Hy: y
HQ: y => forall (z w : bool), Q y z w

(forall (z : bool), P x z) \/ forall (z w : bool), Q y z w

Note how we used the clear pattern to discard the assumption X.

Generalization. The generalization tactical moves assumptions from the context into the
conclusion and generalizes subterms or formulas of the conclusion.

τ: π1 · · ·πn⊚

Generalize the patterns π1, . . . , πn, starting from πn and going back, and then run tactic τ . This
tactical is only applicable to certain tactics: move (p. 47), case (p. 64) (just the version that
destructs the top assumption of a goal’s conclusion) and elim (p. 67).

• When π is an assumption from the context, it’s moved back into the conclusion, using
universal quantification or an implication, as appropriate. If one assumption depends on
another, one can’t generalize the later without also generalizing the former.
For example, if the current goal is

Type variables: <none>

x : int
y : int
eq_xy: x = y

y = x

then running

move: x eq_xy.

produces

Type variables: <none>

y : int

forall (x : int), x = y => y = x

In this example, one can’t generalize x without also generalizing eq_xy.

• π may also be a subformula or subterm of the goal, or _, which stands for the whole goal,
possibly prefixed by an occurrence selector. This replaces the formula or subterm with a
universally quantified identifier of the approprate type.
For example, if the current goal is
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Type variables: <none>

x : int
y : int

x = y => y = x

then running

move: (y = x).

produces

Type variables: <none>

x : int
y : int

forall (x0 : bool), x = y => x0

Alternatively, running

move: {2} y {2} x.

produces

Type variables: <none>

x : int
y : int

forall (y0 x0 : int), x = y => y0 = x0

3.3.4 Tactics
idtac⊚

Does nothing, i.e., leaves the goal unchanged.

move⊚

Does nothing, equivalent to idtac (p. 47). It is mainly used in conjunction with the introduction
tactical and the generalization mechanism. See Section 3.3.3.

clear a1 · · · an⊚

Clear assumptions a1 · · · an from the goal’s context. Fail if any remaining hypotheses depend on
any of the ai.
For example, if the current goal is

Type variables: <none>

x : int
y : int
z : int
eq_xy: x = y
eq_yz: y = z

x - 1 = y - 1

then running
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clear z eq_yz.

produces

Type variables: <none>

x : int
y : int
eq_xy: x = y

x - 1 = y - 1

assumption⊚

Search in the context for a hypothesis that is convertible to the goal’s conclusion, solving the
goal if one is found. Fail if none can be found.
For example, if the current goal is

Type variables: <none>

x : int
y : int
eq_xy: x = y

x = y

then running

assumption.

solves the goal.

reflexivity⊚

Solve goals with conclusions of the form b = b (up to computation).
For example, if the current goal is

Type variables: <none>

y : bool

(fun (x : bool) => !x) y = !y

then running

reflexivity.

solves the goal.

left⊚

Reduce a goal whose conclusion is a disjunction to one whose conclusion is its left member.
For example, if the current goal is

Type variables: <none>

x : int
y : int
eq_xy: x - 1 = y

x = y + 1 \/ y = x + 1

then running
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left.

produces the goal

Type variables: <none>

x : int
y : int
eq_xy: x - 1 = y

x = y + 1

right⊚

Reduce a goal whose conclusion is a disjunction to one whose conclusion is its right member.
For example, if the current goal is

Type variables: <none>

x : int
y : int
eq_yz: y - 1 = x

x = y + 1 \/ y = x + 1

then running

right.

produces the goal

Type variables: <none>

x : int
y : int
eq_yz: y - 1 = x

y = x + 1

If we replace \/ by || in this example, we can see the difference between the two versions of
disjunction: if the current goal is

Type variables: <none>

x : int
y : int
eq_yz: y - 1 = x

x = y + 1 || y = x + 1

then running

right.

produces the goal

Type variables: <none>

x : int
y : int
eq_yz: y - 1 = x

x <> y + 1 => y = x + 1
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exists e⊚

Reduces proving an existential to proving the witness e satisfies the existential’s body.
For example, if the current goal is

Type variables: <none>

x : int
rng_x: 0 < x < 5

exists (x0 : int), 5 < x0 < 10

then running

exists (x + 5).

produces the goal

Type variables: <none>

x : int
rng_x: 0 < x < 5

5 < x + 5 < 10

split⊚

Break a goal whose conclusion is intrinsically conjunctive into goals whose conclusions are its
conjuncts. For instance, it can:

• close any goal that is convertible to true or provable by reflexivity,

• replace a logical equivalence by the direct and indirect implications,

• replace a goal of the form ϕ1 /\ ϕ2 by the two subgoals for ϕ1 and ϕ2. The same applies
for a goal of the form ϕ1 && ϕ2,

• replace an equality between n-tuples by n equalities on their components.

For example, if the current goal is

Type variables: <none>

x : int
y : int

x = y <=> x - 1 = y - 1

then running

split.

produces the goals

Type variables: <none>

x : int
y : int

x = y => x - 1 = y - 1

and



CHAPTER 3. TACTICS 51

Type variables: <none>

x : int
y : int

x - 1 = y - 1 => x = y

And if the current goal is

Type variables: <none>

x : int
y : int
z : int
w : int
eq_xy: x = y
eq_zw: z = w

x - 1 = y - 1 /\ z + 1 = w + 1

then running

split.

produces the goals

Type variables: <none>

x : int
y : int
z : int
w : int
eq_xy: x = y
eq_zw: z = w

x - 1 = y - 1

and

Type variables: <none>

x : int
y : int
z : int
w : int
eq_xy: x = y
eq_zw: z = w

z + 1 = w + 1

Repeating the last example with && rather than /\, if the current goal is

Type variables: <none>

x : int
y : int
z : int
w : int
eq_xy: x = y
eq_zw: z = w

x - 1 = y - 1 && z + 1 = w + 1
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then running

split.

produces the goals

Type variables: <none>

x : int
y : int
z : int
w : int
eq_xy: x = y
eq_zw: z = w

x - 1 = y - 1

and

Type variables: <none>

x : int
y : int
z : int
w : int
eq_xy: x = y
eq_zw: z = w

x - 1 = y - 1 => z + 1 = w + 1

This illustrates the difference between /\ and &&. And if the current goal is

Type variables: <none>

x : int
y : int
z : int
w : int
eq_xz: x = z + 9
eq_yw: y = w - 12

(x - 7, 2 + y) = (z + 2, w - 10)

then running

split.

produces the goals

Type variables: <none>

x : int
y : int
z : int
w : int
eq_xz: x = z + 9
eq_yw: y = w - 12

x - 7 = z + 2

and
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Type variables: <none>

x : int
y : int
z : int
w : int
eq_xz: x = z + 9
eq_yw: y = w - 12

2 + y = w - 10

congr⊚

Replace a goal whose conclusion has the form f t1 · · · tn = f u1 · · · un, where f is an assumption
identifier or operator, with subgoals having conclusions ti = ui for all i. Subgoals solvable by
reflexivity are automatically closed. Also works when the operator is used in infix form.
For example, if the current goal is

Type variables: <none>

x : int
y : int
x': int
y': int
f : int −> int −> int
eq_xx': x = x' - 2
eq_yy': y = y' + 2

f (x + 1) (y - 1) = f (x' - 1) (y' + 1)

then running

congr.

produces the goals

Type variables: <none>

x : int
y : int
x': int
y': int
f : int −> int −> int
eq_xx': x = x' - 2
eq_yy': y = y' + 2

x + 1 = x' - 1

and

Type variables: <none>

x : int
y : int
x': int
y': int
f : int −> int −> int
eq_xx': x = x' - 2
eq_yy': y = y' + 2

y - 1 = y' + 1



CHAPTER 3. TACTICS 54

And if the current goal is

Type variables: <none>

x : int
y : int
x': int
y': int
eq_xx': x = x' - 2
eq_yy': y = y' + 2

x + 1 + (y - 1) = x' - 1 + (y' + 1)

then running

congr.

produces this same pair of subgoals.

subst x | subst⊚

Syntax: subst x. Search for the first equation of the form x = t or t = x in the context and
replace all the occurrences of x by t everywhere in the context and the conclusion before clearing
it.
For example, if the current goal is

Type variables: <none>

x : bool
y : bool
z : bool
w : bool
eq_yx: y = x
eq_yz: y = z
eq_zw: z = w

x = w

then running

subst x.

takes us to

Type variables: <none>

y : bool
z : bool
w : bool
eq_zw: z = w
eq_yz: y = z

y = w

from which running

subst y.

takes us to

Type variables: <none>

z : bool
w : bool
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eq_zw: z = w

z = w

from which running
subst z.

takes us to
Type variables: <none>

w : bool

w = w

Syntax: subst. Repeatedly apply subst x to all identifiers in the context.
For example, if the current goal is

Type variables: <none>

x : bool
y : bool
z : bool
w : bool
eq_yx: y = x
eq_yz: y = z
eq_zw: z = w

x = w

then running
subst.

takes us to
Type variables: <none>

x : bool

x = x

trivial⊚

Try to solve the goal by using a mixture of low-level tactics. This tactic is called by the
introduction pattern //.
For example, if the current goal is

Type variables: <none>

forall (x y : int), x = y => y - 1 = x - 1

then running
trivial.

solves the goal. On the other hand, if the current goal is
Type variables: <none>

forall (x y z : bool), (x /\ y => z) <=> (x => y => z)
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then running

trivial.

leaves the goal unchanged.

FiXme Note: Be a bit more detailed about what this tactic does?

done⊚

Apply trivial (p. 55) and fail if the goal is not closed.

simplify | simplify x1 · · ·xn | simplify delta⊚

Reduce the goal’s conclusion to its βιζΛ-head normal-form, followed by one step of parallel,
strong δ-reduction if delta is given. The δ-reduction can be restricted to a set of defined symbols
by replacing delta by a non-empty sequence of targeted symbols. You can reduce the conclusion
to its β-head normal form (resp. ι, ζ, Λ-head normal form) by using the tactic beta (resp. iota,
zeta, logic). These tactics can be combined together, separated by spaces, to perform head
reduction by any combination of the rule sets.
For example, if the current goal is

Type variables: <none>

y : bool
z : bool
imp_yz: y => z

true => true <=> (y => true /\ z)

then running

simplify.

produces the goal

Type variables: <none>

y : bool
z : bool
imp_yz: y => z

y => z

And if the current goal is

Type variables: <none>

y : bool
z : bool
imp_yz: y => z

false => false <=> (y => false /\ z)

then running

simplify.

produces the goal

Type variables: <none>

y : bool
z : bool
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imp_yz: y => z

true

FiXme Note: Is this the right place to define “convertible”?

progress | progress τ⊚

Break the goal into multiple simpler ones by repeatedly applying split, subst and move=>. The
tactic τ given to progress is tentatively applied after each step.
For example, if the current goal is

Type variables: <none>

forall (x y z : bool), (x /\ y => z) <=> (x => y => z)

then running

progress.

solves the goal.

FiXme Note: Describe progress options.

smt smt-options⊚

Try to solve the goal using SMT solvers. The goal is sent along with the local hypotheses plus
selected axioms and lemmas. The SMT solvers used, their options, and the axiom selection
algorithm are specified by smt-option.
For example, if the current goal is

Type variables: <none>

forall (x y z : bool), (x /\ y => z) <=> (x => y => z)

then running

smt.

solves the goal.
Options

• timeout=n: set the timeout for provers to n (in seconds).
• maxprovers=n: set the maximun number of prover runing in parallele to n
• prover=[prover-selector]: select the provers, where prover-selector is a list of modified

prover names:
– ``prover-name'': use the listed prover;
– +``prover-name'': add prover-name to the current list of provers;
– -``prover-name'': remove prover-name from the current list of provers;

Examples:
– [``Z3'' ``Alt-Ergo'']: use only Z3 and Alt-Ergo;
– [``Z3'' ``Alt-Ergo'' -''Z3'']: use only Alt-Ergo;
– [-''CVC4'']: remove CVC4 form the current list of provers;
– [+''CVC4'']: add CVC4 to the current list of provers;

FiXme Note: Describe failure states of prover selection.
• Axiom selection: axioms and lemmas are not all send to smt provers, EasyCrypt use a

strategy to automatically select them. Lemmas and axioms marked with “nosmt” are not
selected by default. This strategy can be parametrized using different options:

– unwantedlemmas=dbhint: do not send axiom/lemma selected by dbhint
– wantedlemmas=dbhint: send axiom/lemma selected by dbhint
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– all: select all available axioms/lemmas execpted those specified by unwantedlemmas (if
any).

– maxlemmas=n: set the maximun number of selected axioms/lemmas to n. Keep this
number small is generally more effienciant. Variant: n

– iterate: try to incrementally augment the number of selected axioms/lemmas. Last
call will be equivalent to all.

FiXme Note: Describe dbhint options.
Variant: Short options.
Options can also be specified by short name, for example:

smt 100 [+''Z3] tmo=4 mp=2

is equivalent to

smt maxlemmas=100 prover=[+''Z3] timeout=4 maxprovers=2

Short options can be any substring of the full option names that uniquely identifies the desired
option: when several options match, their full names are given.
Smt option can be set globally using the following syntax: prover smt-options FiXme Note:
Make this a pragma?
Remark: By default, smt failures cannot be caught by the try (p. 69) tactical.

admit⊚

Close the current goal by admitting it.
For example, if the current goal is

Type variables: <none>

x : int
y : int

x = y + 1 /\ x = y - 1

then running

admit.

solves the goal.

change ϕ⊚

Replace the current goal’s conclusion by ϕ—ϕ must be convertible to the current goal’s conclusion.
For example, if the current goal is

Type variables: <none>

y : bool
z : bool
imp_yz: y => z

true => true <=> (y => true /\ z)

then running

change (y => z).

produces the goal

Type variables: <none>

y : bool
z : bool
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imp_yz: y => z

y => z

pose x := π⊚

Search for the first subterm t of the goal’s conclusion matching π and leading to the full
instantiation of the pattern. Then introduce to the goal’s context, after instantiation, the local
definition x := t, and abstract all occurrences of t in the goal’s conclusion as x. An occurrence
selector can be used (see Subsection 3.3.2).
For example, if the current goal is

Type variables: <none>

x : int
y : int

2 * ((x + 1 + y) * x) = (x + 1 + y) * x + (x + 1 + y) * x

then running

pose z := (_ + y) * _.

produces the goal

Type variables: <none>

x : int
y : int
z : int := (x + 1 + y) * x

2 * z = z + z

have ι: ϕ⊚

Logical cut. Generate two subgoals: one whose conclusion is the cut formula ϕ, and one with
conclusion ϕ => ψ where ψ is the current goal’s conclusion. Moreover, the introduction pattern ι

is applied to the second subgoal.
For example, if the current goal is

Type variables: <none>

x : bool
notnot_x: (x => false) => false

x

then running

cut excl_or : x \/ (x => false).

produces the goals

Type variables: <none>

x : bool
notnot_x: (x => false) => false

x \/ (x => false)

and
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Type variables: <none>

x : bool
notnot_x: (x => false) => false
excl_or: x \/ (x => false)

x

Syntax: have ι: ϕ by τ . Attempts to use tactic τ to close the first subgoal (corresponding to the
cut formula ϕ), and fails if impossible.

cut ι: ϕ⊚

Same as have (p. 59).

apply p | apply /p1 · · · /pn | apply p in H⊚

Syntax: apply p. Tries to match the conclusion of the proof term p with the goal’s conclusion.
If the match succeeds and leads to the full instantiation of the pattern, then the goal is replaced,
after instantiation, with the subgoals of the proof term.
Consider the declarations

pred P : int.
pred Q : int.
pred R : int.
axiom P (x : int) : P x.
axiom Q (x : int) : P x => Q x.
axiom R (x : int) : P(x + 1) => Q x => R x.

If the current goal is

Type variables: <none>

x : int

R x

then running

apply R.

produces the goals

Type variables: <none>

x : int

P (x + 1)

and

Type variables: <none>

x : int

Q x

And running

apply (R x _ (Q x _)).

from that initial goal produces the goals
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Type variables: <none>

x : int

P (x + 1)

and

Type variables: <none>

x : int

P x

Syntax: apply /p1 · · · /pn. Apply the proof terms p1, . . . , pn in sequence. At each stage of this
process, we have some number of goals. Initially, we have just the current goal. After applying
p1, we have whatever goals p1 has produced from the current goal. p2 is applied to the last of
these goals, and that last goal is replaced by the goals produced by running p2, etc. Fails without
changing the goal if any of these applications fails.
For example, if the current goal is

Type variables: <none>

x : int

R x

then running

apply /R /Q /P /P.

solves the goal.

Syntax: apply p in H. Apply p in forward reasoning to H, replacing H by the result.
For example, if the current goal is

Type variables: <none>

x : int
HP: P (x + 1)

Q x => R x

then running

apply R in HP.

produces the goal

Type variables: <none>

x : int
HP: Q x => R x

Q x => R x

exact p | exact /p1 · · · /pn⊚

Syntax: exact p. Equivalent to by apply p, i.e., apply the given proof-term and then try to close
the goals with trivial—failing if not all goals can be closed.

Syntax: exact /p1 · · · /pn. Equivalent to by apply /p1 · · · /pn.
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rewrite π1 · · ·πn | rewrite π1 · · ·πn in H⊚

Syntax: rewrite π1 · · ·πn. Rewrite the rewrite-pattern π1 · · ·πn from left to right, where the πi

can be of the following form:

• one of //, /=, //=,

• a proof-term p, or

• a pattern prefixed by / (slash).

The two last forms can be prefixed by a direction indicator (the sign -, see Subsection 3.3.2),
followed by an occurrence selector (see Subsection 3.3.2), followed (for proof-terms only) by a
repetition marker (!, ?, n! or n?). All these prefixes are optional.
Depending on the form of π, rewrite π does the following:

• For //, /=, and //=, see Subsection 3.3.3.

• If π is a proof-term with conclusion f1 = f2, then rewrite searches for the first subterm of
the goal’s conclusion matching f1 and resulting in the full instantiation of the pattern. It
then replaces, after instantiation of the pattern, all the occurrences of f1 by f2 in the goal’s
conclusion, and creates new subgoals for the instantiations of the assumptions of p. If no
subterms of the goal’s conclusion match f1 or if the pattern cannot be fully instantiated by
matching, the tactic fails. The tactic works the same if the pattern ends by f1 <=> f2. If
the direction indicator - is given, rewrite works in the reverse direction, searching for a
match of f2 and then replacing all occurrences of f2 by f1.

• If π is a /-prefixed pattern of the form o p1 · · · pn, with o a defined symbol, then rewrite
searches for the first subterm of the goal’s conclusion matching o p1 · · · pn and resulting
in the full instantiation of the pattern. It then replaces, after instantiation of the pattern,
all the occurrences of o p1 · · · pn by the βδ head-normal form of o p1 · · · pn, where the
δ-reduction is restricted to subterms headed by the symbol o. If no subterms of the goal’s
conclusion match o p1 · · · pn or if the pattern cannot be fully instantiated by matching,
the tactic fails. If the direction indicator - is given, rewrite works in the reverse direction,
searching for a match of the βδo head-normal of o p1 · · · pn and then replacing all occurrences
of this head-normal form with o p1 · · · pn.

The occurrence selector restricts which occurrences of the matching pattern are replaced in the
goal’s conclusion—see Subsection 3.3.2.
Repetition markers allow the repetition of the same rewriting. For instance, rewrite π leads to
do! rewrite π. See the tactical do for more information.
Lastly, rewrite π1 · · ·πn is equivalent to rewrite π1; ...; rewrite πn.
For example, if the current goal is

Type variables: <none>

x : int
y : int
eq_xy: x = y

forall (z : int), y = z => x = z

then running

rewrite eq_xy.

produces
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Type variables: <none>

x : int
y : int
eq_xy: x = y

forall (z : int), y = z => y = z

from which running

rewrite - {1} eq_xy.

produces

Type variables: <none>

x : int
y : int
eq_xy: x = y

forall (z : int), x = z => y = z

from which running

rewrite - eq_xy.

produces

Type variables: <none>

x : int
y : int
eq_xy: x = y

forall (z : int), x = z => x = z

Syntax: rewrite π1 · · ·πn in H. Like the preceding case, except rewriting is done in the hypoth-
esis H instead of in the goal’s conclusion. Rewriting using a proof term is only allowed when the
proof term was defined globally or before the assumption H.
For example, if the current goal is

Type variables: <none>

x : int
y : int
eq_xy: x = y
z : int
eq_xz: y = z

x = z

then running

rewrite - eq_xy in eq_xz.

produces

Type variables: <none>

x : int
y : int
eq_xy: x = y
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z : int
eq_xz: x = z

x = z

case ϕ | case⊚

Syntax: case ϕ. Assuming the goal’s conclusion is not a statement judgement, do an excluded-
middle case analysis on ϕ, substituting ϕ in the goal’s conclusion.
For example, if the current goal is

Type variables: <none>

x : int
y : int
abs_bnd: `|x - y| <= 10

x - y <= 10 \/ y - x <= 10

then running

case (x <= y).

produces the goals

Type variables: <none>

x : int
y : int
abs_bnd: `|x - y| <= 10

x <= y => x - y <= 10 \/ y - x <= 10

and

Type variables: <none>

x : int
y : int
abs_bnd: `|x - y| <= 10

! x <= y => x - y <= 10 \/ y - x <= 10

Syntax: case. Destruct the top assumption of the goal’s conclusion, generating subgoals that
are dependent upon the kind of assumption destructed. This form of the tactic can be followed
by the generalization tactical—see Subsection 3.3.3.

• (conjunction) For example, if the current goal is

Type variables: <none>

x : int
y : int
z : int

x = y /\ y = z => x = z

then running

case.
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produces the goal

Type variables: <none>

x : int
y : int
z : int

x = y => y = z => x = z

&& works identically.

• (disjunction) For example, if the current goal is

Type variables: <none>

x : int
y : int

x < y \/ y < x => x - y <> 0

then running

case.

produces the goals

Type variables: <none>

x : int
y : int

x < y => x - y <> 0

and

Type variables: <none>

x : int
y : int

y < x => x - y <> 0

|| works identically.

• (existential) For example, if the current goal is

Type variables: <none>

(exists (x : int), 0 < x < 5) => exists (x : int), 5 < x < 10

then running

case.

produces the goal

Type variables: <none>

forall (x : int), 0 < x < 5 => exists (x0 : int), 5 < x0 < 10
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• (unit) Substitutes tt for the assumption in the remainder of the conclusion.

• (bool) For example, if the current goal is

Type variables: <none>

forall (x y : bool), x <=> y => x = y

then running

case.

produces the goals

Type variables: <none>

forall (y : bool), true <=> y => true = y

and

Type variables: <none>

forall (y : bool), false <=> y => false = y

• (product type) For example, if the current goal is

Type variables: <none>

forall (x y : bool * bool),
x <> y => x.`1 <> y.`1 \/ x.`2 <> y.`2

then running

case.

produces the goal

Type variables: <none>

forall (x1 x2 : bool) (y : bool * bool),
(x1, x2) <> y =>
(x1, x2).`1 <> y.`1 \/ (x1, x2).`2 <> y.`2

• (inductive datatype) Consider the inductive datatype declaration:

type tree = [Leaf | Node of bool & tree & tree].

Then, if the current goal is

Type variables: <none>

forall (tr : tree),
tr = Leaf \/
exists (b : bool) (tr1 tr2 : tree), tr = Node b tr1 tr2
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then running

case.

produces the goals

Type variables: <none>

Leaf = Leaf \/
exists (b : bool) (tr1 tr2 : tree), Leaf = Node b tr1 tr2

and

Type variables: <none>

forall (b : bool) (t t0 : tree),
Node b t t0 = Leaf \/
exists (b0 : bool) (tr1 tr2 : tree),

Node b t t0 = Node b0 tr1 tr2

elim | elim /L⊚

Syntax: elim. Eliminates the top assumption of the goal’s conclusion, generating subgoals
that are dependent upon the kind of assumption eliminated. This tactic can be followed by the
generalization tactical—see Subsection 3.3.3.
elim mostly works identically to case (p. 64), the exception being inductive datatype and the
integers (for which a built-in induction principle is applied—see the other form).
Consider the inductive datatype declaration:

type tree = [Leaf | Node of bool & tree & tree].

Then, if the current goal is

Type variables: <none>

p : tree −> bool
basis: p Leaf
indstep: forall (b : bool) (tr1 tr2 : tree),

p tr1 => p tr2 => p (Node b tr1 tr2)

forall (tr : tree), p tr

running

elim.

produces the goals

Type variables: <none>

p : tree −> bool
basis: p Leaf
indstep: forall (b : bool) (tr1 tr2 : tree),

p tr1 => p tr2 => p (Node b tr1 tr2)

p Leaf

and
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Type variables: <none>

p : tree −> bool
basis: p Leaf
indstep: forall (b : bool) (tr1 tr2 : tree),

p tr1 => p tr2 => p (Node b tr1 tr2)

forall (b : bool) (t t0 : tree), p t => p t0 => p (Node b t t0)

Syntax: elim /L. Eliminates the top assumption of the goal’s conclusion using the supplied
induction principle lemma. This tactic can be followed by the generalization tactical—see Subsec-
tion 3.3.3. For example, consider the declarations

type tree = [Leaf | Node of bool & tree & tree].
op rev (tr : tree) : tree =

with tr = Leaf => Leaf
with tr = Node b tr1 tr2 => Node b (rev tr1) (rev tr2).

and suppose we’ve already proved

lemma IndPrin :
forall (p : tree −> bool) (tr : tree),
p Leaf =>
(forall (b : bool) (tr1 tr2 : tree),
p tr1 => p tr2 => p(Node b tr1 tr2)) =>

p tr.

Then, if the current goal is

Type variables: <none>

forall (t : tree), rev (rev t) = t

running

elim /IndPrin.

produces the goals

Type variables: <none>

rev (rev Leaf) = Leaf

and

Type variables: <none>

forall (b : bool) (tr1 tr2 : tree),
rev (rev tr1) = tr1 =>
rev (rev tr2) = tr2 => rev (rev (Node b tr1 tr2)) = Node b tr1 tr2

When we consider the Int theory in Chapter 5, we’ll discuss the induction principle on the
integers.

algebra⊚

FiXme Note: Missing description of algebra.
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3.3.5 Tacticals
Tactics can be combined together, composed and modified by tacticals. We’ve already seen the
introduction and generalization tacticals, which turn a tactic τ and a list of patterns into a
composite tactic, which may then combined with other tactics.

τ1; τ2⊚

Apply τ2 to all the subgoals generated by τ1. Sequencing groups to the left, so that τ1; τ2; τ3

means (τ1; τ2); τ3.
For example, if the current goal is

Type variables: <none>

x : bool
y : bool
z : bool

(x /\ y) /\ z => x /\ y /\ z

then running

case; case.

produces the goals

Type variables: <none>

x : bool
y : bool
z : bool

x => y => z => x /\ y /\ z

τ1; [ τ1 | · · · | τn]⊚

Run τ1, which must generate exactly n subgoals, G1, . . . , Gn. Then apply τ ′
i to Gi, for all i.

For example, if the current goal is

Type variables: <none>

x : bool
y : bool
z : bool
tr_x: x
tr_y: y
tr_z: z

x /\ y /\ z

then running

split; [assumption | split; assumption].

solves the goal.

try τ⊚

Execute the tactic τ if it succeeds; do nothing (leave the goal unchanged) if it fails.
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Remark. By default, EasyCrypt proofs are run in strict mode. In this mode, smt failures
cannot be caught using try. This allows EasyCrypt to always build the proof tree correctly,
even in weak check mode, where smt calls are assumed to succeed. Inside a strict proof, weak
check mode can be turned on and off at will, allowing for the fast replay of proof sections during
development. In any event, we recommend never using try smt: a little thought is much more
cost-effective than failing smt calls.

do! τ⊚

Apply τ to the current goal, then repeatedly apply it to all subgoals, stopping on a branch only
when it fails. An error is produced it τ does not apply to the current goal.

For example, if the current goal is

Type variables: <none>

x : bool
y : bool
z : bool
w : bool

((x /\ y) /\ z) /\ w \/ (x /\ y /\ z) /\ w => w

then running

do! case.

produces the goals

Type variables: <none>

x : bool
y : bool
z : bool
w : bool

x => y => z => w => w

and

Type variables: <none>

x : bool
y : bool
z : bool
w : bool

x => y /\ z => w => w

Variants.
do? τ apply τ 0 or more times, until it fails
do n! τ apply τ with depth exactly n
do n? τ apply τ with depth at most n

τ; first τ2⊚

Apply the tactic τ1, then apply τ2 on the first subgoal generated by t1, leaving the other goals
unchanged. An error is produced if no subgoals are generated by τ1.
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Variants.
τ1; first n τ2 apply τ2 on the first n subgoals generated by τ1

τ1; last τ2 apply τ2 on the last subgoal generated by τ1

τ1; last n τ2 apply τ2 on the last n subgoals generated by τ1

τ; first n last reorder the subgoals generated by τ , moving the first n to
the end of the list

τ; last n first
reorder the subgoals generated by τ , moving the last n to
the beginning of the list

τ; last first
reorder the subgoals generated by τ , moving the last one
to the beginning of the list

τ; first last reorder the subgoals generated by τ , moving the first one
to the end of the list

For example, if the current goal is
Type variables: <none>

x : bool
y : bool
z : bool

(x /\ y => z) <=> (x => y => z)

then running
split; last first.

produces the goals
Type variables: <none>

x : bool
y : bool
z : bool

(x => y => z) => x /\ y => z

and
Type variables: <none>

x : bool
y : bool
z : bool

(x /\ y => z) => x => y => z

by τ⊚

Apply the tactic τ and try to close all the generated subgoals using trivial (p. 55). Fail if not
all subgoals can be closed.

Remark. Inside the a lemma’s proof, by [] is equivalent to by trivial. But the form
lemma · · · by [].

means
lemma · · · by (trivial; smt).
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3.4 Program Logics
In this section, we describe the tactics of EasyCrypt’s three program logics: pRHL, pHL and
HL. There are five rough classes of program logic tactics:

1. those that actually reason about the program in Hoare logic style;

2. those that correspond to semantics-preserving program transformations or compiler opti-
mizations;

3. those that operate at the level of specifications, strengthening, combining or splitting goals
without modifying the program;

4. tactics that automate the application of other tactics;

5. advanced tactics for handling eager/lazy sampling and bounding the probability of failure.

We discuss these five classes in turn.
Some of the program reasoning tactics have two modes when used on goals whose conclusions

are pRHL statement judgements. Their default mode is to operate on both programs at once.
When a side is specified (using τ{1} or τ{2}), a one-sided variant is used, with 1 referring to the
left program, and 2 to the right one.

3.4.1 Tactics for Reasoning about Programs
proc⊚

Syntax: proc. Turn a goal whose conclusion is a pRHL, pHL or HL judgement involving
concrete procedure(s) into one whose conclusion is a statement judgement by replacing the
concrete procedure(s) by their body/ies. Assertions about res/res{i} are turned into ones about
the value(s) returned by the procedure(s).

For example, if the current goal is
Type variables: <none>

pre = ={x, y}

G1.f ~ G2.f

post = ={res}

then running
proc.

produces the goal
Type variables: <none>

&1 (left ) : G1.f
&2 (right) : G2.f

pre =
(x{1}, y{1}).`1 = (x{2}, y{2}).`1 /\
(x{1}, y{1}).`2 = (x{2}, y{2}).`2

x <− x + 1 (1) y <− y + 1
y <− y + 1 (2) x <− x + 1

post = x{1} + y{1} = x{2} + y{2}
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Syntax: proc I. Reduce a goal whose conclusion is a pRHL judgement involving the same
abstract procedure (but perhaps using different implementations of its oracles) (resp., an HL
judgement involving an abstract procedure) to goals whose conclusions are pRHL (resp., HL)
judgements on those oracles, plus goals with ambient logic conclusions checking the original
judgement’s pre- and postconditions allow such a reduction (the preconditions must assume I
and, in the pRHL case, the equality of the abstract procedure’s parameter(s) and the global
variables of the module in which the procedure is contained (except in the case when the module’s
type specifies that the abstract procedure initializes its global variables; the postconditions may
assume I and, in the pRHL case, the equality of the results of the procedure call(s) and the
values of the global variables). The generated pRHL/HL subgoals have pre- and postconditions
assuming/asserting I; in the pRHL case, the preconditions also assume the equality of the oracles’
parameters, and their postconditions also assert the equality of the oracles’ results).

For example, given the declarations

module type OR = {
proc f1() : unit
proc f2() : unit
proc f3() : unit

}.

module Or : OR = {
var x : int
proc f1() : unit = {

x <− x + 2;
}
proc f2() : unit = {

x <− x - 2;
}
proc f3() : unit = {

x <− x + 1;
}

}.

module type T(O : OR) = {
proc g() : unit {O.f1 O.f2}

}.

if the current goal is

Type variables: <none>

M : T{Or}

pre = ={glob M} /\ Or.x{1} %% 2 = 0 /\ Or.x{2} %% 2 = 0

M(Or).g ~ M(Or).g

post = Or.x{1} %% 2 = 0 /\ Or.x{2} %% 2 = 0

then running

proc (Or.x{1} %% 2 = 0 /\ Or.x{2} %% 2 = 0).

produces the goals

Type variables: <none>

M : T{Or}

forall &1 &2,



CHAPTER 3. TACTICS 74

={glob M} /\ Or.x{1} %% 2 = 0 /\ Or.x{2} %% 2 = 0 =>
true /\ ={glob M} /\ Or.x{1} %% 2 = 0 /\ Or.x{2} %% 2 = 0

and

Type variables: <none>

M : T{Or}

forall &1 &2,
={res} /\ ={glob M} /\ Or.x{1} %% 2 = 0 /\ Or.x{2} %% 2 = 0 =>
Or.x{1} %% 2 = 0 /\ Or.x{2} %% 2 = 0

and

Type variables: <none>

M : T{Or}

pre = true /\ Or.x{1} %% 2 = 0 /\ Or.x{2} %% 2 = 0

Or.f1 ~ Or.f1

post = ={res} /\ Or.x{1} %% 2 = 0 /\ Or.x{2} %% 2 = 0

and

Type variables: <none>

M : T{Or}

pre = true /\ Or.x{1} %% 2 = 0 /\ Or.x{2} %% 2 = 0

Or.f2 ~ Or.f2

post = ={res} /\ Or.x{1} %% 2 = 0 /\ Or.x{2} %% 2 = 0

The tactic would fail without the module restriction T{Or} on M, as then M could directly manipulate
Or.x. It would also fail if, in the declaration of the module type T, g were given access to O.f3.

Syntax: proc B I. Like proc I, but just for pRHL judgements and uses “upto-bad” (upto-failure)
reasoning, where the bad (failure) event, B, is evaluated in the second program’s memory, and
the invariant I only holds up to the point when failure occurs. In addition to subgoals whose
conclusions are pRHL judgments involving the oracles the abstract procedure may query (their
preconditions assume I and the equality of oracles’ parameters, as well as that B is false; their
postconditions assert I and the equality of the oracles’ results—but only when B does not hold),
subgoals are generated that check that: the original judgement’s pre- and postconditions support
the reduction; the abstract procedure is lossless, assuming the losslessness of the oracles it may
query; the oracles used by the abstract procedure in the first program are lossless once the bad
event occurs; and the oracles used by the abstract procedure in the second program guarantee
the stability of the failure event with probability 1.

For example, suppose we have the following declarations

module type OR = {
proc qry(x : int) : int

}.

op low : int = -100.
op upp : int = 100.
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module Or1 : OR = {
var qry, rsp : int
var queried : bool

proc qry(x : int) : int = {
var y : int;
if (x = qry) {

y <− rsp;
queried <− true;

} else {
y <$ [low .. upp];

}
return y;

}
}.

module Or2 : OR = {
var qry : int
var queried : bool

proc qry(x : int) : int = {
var y : int;
y <$ [low .. upp];
queried <− queried \/ x = qry;
return y;

}
}.

module type ADV(O : OR) = {
proc * f() : bool

}.

Then, if the current goal is

Type variables: <none>

Adv: ADV{Or1, Or2}
ll_Adv_f: forall (O <: OR{Adv}),

islossless O.qry => islossless Adv(O).f

pre = Or1.qry{1} = Or2.qry{2}

Adv(Or1).f ~ Adv(Or2).f

post = !Or2.queried{2} => ={res}

running

proc Or2.queried (Or1.qry{1} = Or2.qry{2}).

produces the goals

Type variables: <none>

Adv: ADV{Or1, Or2}
ll_Adv_f: forall (O <: OR{Adv}),

islossless O.qry => islossless Adv(O).f

forall &1 &2,
Or1.qry{1} = Or2.qry{2} =>
!Or2.queried{2} => true /\ Or1.qry{1} = Or2.qry{2}
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and

Type variables: <none>

Adv: ADV{Or1, Or2}
ll_Adv_f: forall (O <: OR{Adv}),

islossless O.qry => islossless Adv(O).f

forall &1 &2,
(!Or2.queried{2} =>
={res} /\ ={glob Adv} /\ Or1.qry{1} = Or2.qry{2}) =>

!Or2.queried{2} => ={res}

and

Type variables: <none>

Adv: ADV{Or1, Or2}
ll_Adv_f: forall (O <: OR{Adv}),

islossless O.qry => islossless Adv(O).f

forall (O <: OR{Adv}), islossless O.qry => islossless Adv(O).f

and

Type variables: <none>

Adv: ADV{Or1, Or2}
ll_Adv_f: forall (O <: OR{Adv}),

islossless O.qry => islossless Adv(O).f

pre = !Or2.queried{2} /\ ={x} /\ Or1.qry{1} = Or2.qry{2}

Or1.qry ~ Or2.qry

post = !Or2.queried{2} => ={res} /\ Or1.qry{1} = Or2.qry{2}

and

Type variables: <none>

Adv: ADV{Or1, Or2}
ll_Adv_f: forall (O <: OR{Adv}),

islossless O.qry => islossless Adv(O).f

forall &2, Or2.queried{2} => islossless Or1.qry

and

Type variables: <none>

Adv: ADV{Or1, Or2}
ll_Adv_f: forall (O <: OR{Adv}),

islossless O.qry => islossless Adv(O).f

forall _,
phoare[ Or2.qry : Or2.queried /\ true ==> Or2.queried /\ true] = 1%r

Syntax: proc B I J . Like proc B I, but where the extra invariant, J , holds after failure has
occurred. In the pRHL subgoals involving oracles called by the abstract procedure: the precon-
ditions assume I and the equality of the oracles’ parameters, as well as that B is false; and the
postconditions assert
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• I and the equality of the oracles’ results—when B does not hold; and

• J—when B does hold.

For example, given the declarations of the proc B I example, if the current goal is

Type variables: <none>

Adv: ADV{Or1, Or2}
ll_Adv_f: forall (O <: OR{Adv}),

islossless O.qry => islossless Adv(O).f

pre = Or1.qry{1} = Or2.qry{2} /\ Or1.queried{1} = Or2.queried{2}

Adv(Or1).f ~ Adv(Or2).f

post = Or1.queried{1} = Or2.queried{2} /\ (!Or2.queried{2} => ={res})

then running

proc Or2.queried
(Or1.qry{1} = Or2.qry{2} /\ Or1.queried{1} = Or2.queried{2})
(Or1.queried{1} = Or2.queried{2}).

produces the goals

Type variables: <none>

Adv: ADV{Or1, Or2}
ll_Adv_f: forall (O <: OR{Adv}),

islossless O.qry => islossless Adv(O).f

forall &1 &2,
Or1.qry{1} = Or2.qry{2} /\ Or1.queried{1} = Or2.queried{2} =>
if Or2.queried{2} then Or1.queried{1} = Or2.queried{2}
else

true /\
Or1.qry{1} = Or2.qry{2} /\ Or1.queried{1} = Or2.queried{2}

and

Type variables: <none>

Adv: ADV{Or1, Or2}
ll_Adv_f: forall (O <: OR{Adv}),

islossless O.qry => islossless Adv(O).f

forall &1 &2,
if Or2.queried{2} then Or1.queried{1} = Or2.queried{2}
else

={res} /\
={glob Adv} /\
Or1.qry{1} = Or2.qry{2} /\ Or1.queried{1} = Or2.queried{2} =>

Or1.queried{1} = Or2.queried{2} /\ (!Or2.queried{2} => ={res})

and

Type variables: <none>

Adv: ADV{Or1, Or2}
ll_Adv_f: forall (O <: OR{Adv}),

islossless O.qry => islossless Adv(O).f
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forall (O <: OR{Adv}), islossless O.qry => islossless Adv(O).f

and

Type variables: <none>

Adv: ADV{Or1, Or2}
ll_Adv_f: forall (O <: OR{Adv}),

islossless O.qry => islossless Adv(O).f

pre =
!Or2.queried{2} /\
={x} /\ Or1.qry{1} = Or2.qry{2} /\ Or1.queried{1} = Or2.queried{2}

Or1.qry ~ Or2.qry

post =
if Or2.queried{2} then Or1.queried{1} = Or2.queried{2}
else

={res} /\
Or1.qry{1} = Or2.qry{2} /\ Or1.queried{1} = Or2.queried{2}

and

Type variables: <none>

Adv: ADV{Or1, Or2}
ll_Adv_f: forall (O <: OR{Adv}),

islossless O.qry => islossless Adv(O).f

forall &2,
Or2.queried{2} =>
phoare[ Or1.qry :

Or1.queried = Or2.queried{2} ==>
Or1.queried = Or2.queried{2}] = 1%r

and

Type variables: <none>

Adv: ADV{Or1, Or2}
ll_Adv_f: forall (O <: OR{Adv}),

islossless O.qry => islossless Adv(O).f

forall &1,
phoare[ Or2.qry :

Or2.queried /\ Or1.queried{1} = Or2.queried ==>
Or2.queried /\ Or1.queried{1} = Or2.queried] = 1%r

Syntax: proc*. Reduce a pRHL (resp., HL) judgement to a pRHL (resp., HL) statement
judgement involving calls (resp., a call) to the procedures (resp., procedure).

For example, if the current goal is

Type variables: <none>

pre = ={x, y}

G1.f ~ G2.f



CHAPTER 3. TACTICS 79

post = ={res}

then running

proc*.

produces the goal

Type variables: <none>

&1 (left ) : G1.f
&2 (right) : G2.f

pre = ={x, y}

r <@ G1.f(x, y) (1) r <@ G2.f(x, y)

post = ={r}

Remark. This tactic is particularly useful in combination with inline (p. 106) when faced
with a pRHL judgment where one of the procedures is concrete and the other is abstract.

skip⊚

If the goal’s conclusion is a statement judgement whose program(s) are empty, reduce it to the
goal whose conclusion is the ambient logic formula P => Q, where P is the original conclusion’s
precondition, and Q is its postcondition.

For example, if the current goal is

Type variables: <none>

&1 (left ) : M.f
&2 (right) : N.f

pre = x{1} = -x{2} /\ ={y}

post = x{1} + y{1} = - (x{2} - y{2})

then running

skip.

produces the goal

Type variables: <none>

forall &1 &2, x{1} = -x{2} /\ ={y} => x{1} + y{1} = - (x{2} - y{2})

seq⊚

Syntax: seq n1 n2 : R. pRHL sequence rule. If n1 and n2 are natural numbers and the goal’s
conclusion is a pRHL statement judgement with precondition P , postcondition Q and such that
the lengths of the first and second programs are at least n1 and n2, respectively, then reduce the
goal to two subgoals:
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• A first goal whose conclusion has precondition P , postcondition R, first program consisting
of the first n1 statements of the original goal’s first program, and second program consisting
of the first n2 statements of the original goal’s second program.

• A second goal whose conclusion has preconditionR, postconditionQ, first program consisting
of all but the first n1 statements of the original goal’s first program, and second program
consisting of all but the first n2 statements of the original goal’s second program.

For example, if the current goal is

Type variables: <none>

&1 (left ) : G1.f
&2 (right) : G2.f

pre = ={x, y}

x <− x + 1 (1) y <− y + 1
y <− y + 1 (2) x <− x + 1

post = x{1} + y{1} = x{2} + y{2}

then running

seq 1 1 : (x{1} = x{2} + 1 /\ y{2} = y{1} + 1).

produces the goals

Type variables: <none>

&1 (left ) : G1.f
&2 (right) : G2.f

pre = ={x, y}

x <− x + 1 (1) y <− y + 1

post = x{1} = x{2} + 1 /\ y{2} = y{1} + 1

and

Type variables: <none>

&1 (left ) : G1.f
&2 (right) : G2.f

pre = x{1} = x{2} + 1 /\ y{2} = y{1} + 1

y <− y + 1 (1) x <− x + 1

post = x{1} + y{1} = x{2} + y{2}

Syntax: seq n : R. HL sequence rule. If n is a natural number and the goal’s conclusion is
an HL statement judgement with precondition P , postcondition Q and such that the length of
the program is at least n, then reduce the goal to two subgoals:

• A first goal whose conclusion has precondition P , postcondition R, and program consisting
of the first n statements of the original goal’s program.
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• A second goal whose conclusion has precondition R, postcondition Q, and program consisting
of all but the first n statements of the original goal’s program.

For example, if the current goal is

Type variables: <none>

Context : M.f

pre = x %% 2 = 0

(1) x <− x + 1
(2) x <− x + 1

post = x %% 2 = 0

then running

seq 1 : (x %% 2 = 1).

produces the goals

Type variables: <none>

Context : M.f

pre = x %% 2 = 0

(1) x <− x + 1

post = x %% 2 = 1

and

Type variables: <none>

Context : M.f

pre = x %% 2 = 1

(1) x <− x + 1

post = x %% 2 = 0

Syntax: seq n: C δ1 δ2 ρ1 ρ2 R. pHL sequence rule. If n is a natural number and the goal’s
conclusion is a pHL statement of the form phoare[c :P ==>Q] ⋄ e where the program c has
length at least n and ⋄ is one of <, ≤, =, >, or ≥, then reduce the goal to the following sequence
of goals where c1 denotes the first n statements of c and c2 denotes the remainder of c.

• hoare[c1 :P ==>R]

• phoare[c1 :P ==>C] ⋄ δ1

• phoare[c2 :R ∧ C ==>Q] ⋄ δ2

• phoare[c1 :P ==> !C] ⋄ ρ1

• phoare[c2 :R∧ !C ==>Q] ⋄ ρ2
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• A goal asking to prove δ1δ2 + ρ1ρ2 ⋄ e

When one of δ1, δ2 (resp. ρ1, ρ2) is 0, the other can be replaced with a wildcard _, and the
corresponding goal is not generated, as it is not relevant to the proof. When none of δi or ρi are
given, the following default values are used: δ1 = e, δ2 = 1, ρ1 = 0, ρ2 = _. R is optional and
defaults to true.
FiXme Note: Add some Example(s).

sp⊚

Syntax: sp. If the goal’s conclusion is a pRHL, pHL or HL statement judgement, consume the
longest prefix(es) of the conclusion’s program(s) consisting entirely of statements built-up from
ordinary assignments (not random assignments or procedure call assignments) and if statements,
replacing the conclusion’s precondition by the strongest postcondition R such that the statement
judgement consisting of the conclusion’s original precondition, the consumed prefix(es) and R
holds.

For example, if the current goal is

Type variables: <none>

&1 (left ) : M.f
&2 (right) : N.f

pre = ={y}

if (y = 0) { (1--) if (y = 0) {
y <− 2 (1.1) y <− 3

} else { (1--) } else {
y <− y - 2 (1?1) y <− y - 1

} (1--) }
x <@ M.g() (2--) x <$ [1..10]

post = x{1} + y{1} = x{2} + y{2} - 1

then running

sp.

produces the goal

Type variables: <none>

&1 (left ) : M.f
&2 (right) : N.f

pre =
(exists (y_R : int),

y{2} = 3 /\
y_R = 0 /\
((exists (y_L : int), y{1} = 2 /\ y_L = 0 /\ y_L = y_R) \/
exists (y_L : int), y{1} = y_L - 2 /\ y_L <> 0 /\ y_L = y_R)) \/

exists (y_R : int),
y{2} = y_R - 1 /\
y_R <> 0 /\
((exists (y_L : int), y{1} = 2 /\ y_L = 0 /\ y_L = y_R) \/
exists (y_L : int), y{1} = y_L - 2 /\ y_L <> 0 /\ y_L = y_R)

x <@ M.g() (1) x <$ [1..10]
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post = x{1} + y{1} = x{2} + y{2} - 1

Syntax: sp n1 n2. In pRHL, let sp consume exactly n1 statements of the first program and n2
statements of the second program. Fails if this isn’t possible.

Syntax: sp n. In pHL and HL, let sp consume exactly n statements of the program. Fails if
this isn’t possible.

wp⊚

Syntax: wp. If the goal’s conclusion is a pRHL, pHL or HL statement judgement, consume the
longest suffix(es) of the conclusion’s program(s) consisting entirely of statements built-up from
ordinary assignments (not random assignments or procedure call assignments) and if statements,
replacing the conclusion’s postcondition by the weakest precondition R such that the statement
judgement consisting of R, the consumed suffix(es) and the conclusion’s original postcondition
holds.

For example, if the current goal is

Type variables: <none>

&1 (left ) : M.f
&2 (right) : N.f

pre = ={y}

x <@ M.g() (1--) x <$ [1..10]
if (y = 0) { (2--) if (y = 0) {

y <− 2 (2.1) y <− 3
} else { (2--) } else {

y <− y - 2 (2?1) y <− y - 1
} (2--) }

post = x{1} + y{1} = x{2} + y{2} - 1

then running

wp.

produces the goal

Type variables: <none>

&1 (left ) : M.f
&2 (right) : N.f

pre = ={y}

x <@ M.g() (1) x <$ [1..10]

post =
if y{2} = 0 then

if y{1} = 0 then x{1} + 2 = x{2} + 3 - 1
else x{1} + (y{1} - 2) = x{2} + 3 - 1

else
let y_R = y{2} - 1 in
(if y{1} = 0 then x{1} + 2 = x{2} + y_R - 1
else x{1} + (y{1} - 2) = x{2} + y_R - 1)
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Syntax: wp n1 n2. In pRHL, let wp consume exactly n1 statements of the first program and n2
statements of the second program. Fails if this isn’t possible.

Syntax: wp n. In pHL and HL, let wp consume exactly n statements of the program. Fails if
this isn’t possible.

rnd⊚

When describing the variants of this tactic, we only consider random assignments whose left-hand
sides consist of single identifiers. The generalization to multiple assignment, when distributions
over tuple types are sampled, is straightforward.

Syntax: rnd | rnd f | rnd f g. If the conclusion is a pRHL statement judgement whose
programs end with random assignments x1 <$ d1 and x2 <$ d2, and f and g are functions between
the types of x1 and x2, then consume those random assignments, replacing the conclusion’s
postcondition by the probabilistic weakest precondition of the random assignments wrt. f and g.
The new postcondition checks that:

• f and g are an isomorphism between the distributions d1 and d2;

• for all elements u in the support of d1, the result of substituting u and f u for x1{1} and
x2{2} in the conclusion’s original postcondition holds.

When g is f , it can be omitted. When f is the identity, it can be omitted.

For example, if the current goal is

Type variables: <none>

n : int

&1 (left ) : M.h
&2 (right) : N.h

pre = y{2} = n

x <$ {0,1} (1) y <− y - 1
(2) x <$ [2..3]

post = x{1} <=> x{2} + y{2} = n + 2

then running

rnd (fun b => b ? 3 : 2) (fun m => m = 3).

produces the goal

Type variables: <none>

n : int

&1 (left ) : M.h
&2 (right) : N.h

pre = y{2} = n

(1) y <− y - 1

post =
(forall (xR : int),

xR \in [2..3] => xR = if xR = 3 then 3 else 2) &&
(forall (xR : int),
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xR \in [2..3] => mu1 [2..3] xR = mu1 {0,1} (xR = 3)) &&
forall (xL : bool),

xL \in {0,1} =>
((if xL then 3 else 2) \in [2..3]) &&
xL = ((if xL then 3 else 2) = 3) &&
(xL <=> (if xL then 3 else 2) + y{2} = n + 2)

Note that if one uses the other isomorphism between {0,1} and [2..3] the generated subgoal
will be false.

Syntax: rnd{1} | rnd{2}. If the conclusion is a pRHL statement judgement whose designated
program (1 or 2) ends with a random assignment x <$ d, then consume that random assignment,
replacing the conclusion’s postcondition with a check that:

• the weight of d is 1 (so the random assignment can’t fail);

• for all elements u in the support of d, the result of substituting u for x{i}—where i is the
selected side—in the conclusion’s original postcondition holds.

For example, if the current goal is

Type variables: <none>

&1 (left ) : M.f [programs are in sync]
&2 (right) : M.f

pre = true

(1) x <$ {0,1}

post = ={x}

then running

rnd{1}.

produces the (false!) goal

Type variables: <none>

&1 (left ) : M.f
&2 (right) : M.f

pre = true

(1) x <$ {0,1}

post = is_lossless {0,1} && forall (x0 : bool), x0 \in {0,1} => x0 = x{2}

Syntax: rnd. If the conclusion is an HL statement judgement whose program ends with a random
assignment, then consume that random assignment, replacing the conclusion’s postcondition by
the possibilistic weakest precondition of the random assignment.

For example, if the current goal is

Type variables: <none>

Context : M.f
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pre = true

(1) y <− 2
(2) x <$ [1..10]

post = 3 <= x + y <= 12

then running

rnd.

produces the goal

Type variables: <none>

Context : M.f

pre = true

(1) y <− 2

post = forall (x0 : int), x0 \in [1..10] => 3 <= x0 + y <= 12

Syntax: rnd | rnd E. In pHL, compute the probabilistic weakest precondition of a random
sampling with respect to event E. When E is not specified, it is inferred from the current
postcondition.

if⊚

Syntax: if. If the goal’s conclusion is a pRHL statement judgement whose programs both begin
with if statements, reduce the goal to three subgoals:

• One whose conclusion is the ambient logic formula asserting that the equivalence of the
boolean expressions of the if statements in their respective memories holds given that the
statement judgement’s precondition holds in those memories.

• One in which the if statements have been replaced by their “then” parts, and where the
assertion of the truth of the first if statement’s boolean expression in the first program’s
memory has been added to the conclusion’s precondition.

• One in which the if statements have been replaced by their “else” parts, and where the
assertion of the falsity of the first if statement’s boolean expression in the first program’s
memory has been added to the conclusion’s precondition.

For example, if the current goal is

Type variables: <none>

&1 (left ) : M.f
&2 (right) : N.f

pre = ={x, y}

if (y < x) { (1--) if (y < x) {
z <− x - y (1.1) z <− x - y + 1

} else { (1--) } else {
z <− y - x (1?1) z <− y - x + 1

} (1--) }
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z <− z * 2 (2--)

post = 0 <= z{1} /\ z{1} = 2 * (z{2} - 1)

then running

if.

produces the goals

Type variables: <none>

forall &1 &2, ={x, y} => y{1} < x{1} <=> y{2} < x{2}

and

Type variables: <none>

&1 (left ) : M.f
&2 (right) : N.f

pre = ={x, y} /\ y{1} < x{1}

z <− x - y (1) z <− x - y + 1
z <− z * 2 (2)

post = 0 <= z{1} /\ z{1} = 2 * (z{2} - 1)

and

Type variables: <none>

&1 (left ) : M.f
&2 (right) : N.f

pre = ={x, y} /\ ! y{1} < x{1}

z <− y - x (1) z <− y - x + 1
z <− z * 2 (2)

post = 0 <= z{1} /\ z{1} = 2 * (z{2} - 1)

Syntax: if{1} | if{2}. If the goal’s conclusion is a pRHL judgement in which the first statement
of the specified program is an if statement, then reduce the goal to two subgoals:

• One where the if statement has been replaced by its “then” part, and the precondition has
been augmented by the assertion that the if statement’s boolean expression is true in the
specified program’s memory.

• One where the if statement has been replaced by its “else” part, and the precondition has
been augmented by the assertion that the if statement’s boolean expression is false in the
specified program’s memory.

For example, if the current goal is

Type variables: <none>

&1 (left ) : M.f
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&2 (right) : N.f

pre = ={x, y}

if (y < x) { (1--) if (y < x) {
z <− x - y (1.1) z <− x - y + 1

} else { (1--) } else {
z <− y - x (1?1) z <− y - x + 1

} (1--) }
z <− z * 2 (2--)

post = 0 <= z{1} /\ z{1} = 2 * (z{2} - 1)

then running

if{1}.

produces the goals

Type variables: <none>

&1 (left ) : M.f
&2 (right) : N.f

pre = ={x, y} /\ y{1} < x{1}

z <− x - y (1--) if (y < x) {
(1.1) z <− x - y + 1
(1--) } else {
(1?1) z <− y - x + 1
(1--) }

z <− z * 2 (2--)

post = 0 <= z{1} /\ z{1} = 2 * (z{2} - 1)

and

Type variables: <none>

&1 (left ) : M.f
&2 (right) : N.f

pre = ={x, y} /\ ! y{1} < x{1}

z <− y - x (1--) if (y < x) {
(1.1) z <− x - y + 1
(1--) } else {
(1?1) z <− y - x + 1
(1--) }

z <− z * 2 (2--)

post = 0 <= z{1} /\ z{1} = 2 * (z{2} - 1)

Syntax: if. If the goal’s conclusion is an HL judgement whose first statement is an if statement,
then reduce the goal to two subgoals:

• One where the if statement has been replaced by its “then” part, and the precondition has
been augmented by the assertion that the if statement’s boolean expression is true.
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• One where the if statement has been replaced by its “else” part, and the precondition has
been augmented by the assertion that the if statement’s boolean expression is false.

For example, if the current goal is

Type variables: <none>

Context : M.f

pre = true

(1--) if (y < x) {
(1.1) z <− x - y
(1--) } else {
(1?1) z <− y - x
(1--) }
(2--) z <− z * 2

post = 0 <= z

then running

if.

produces the goals

Type variables: <none>

Context : M.f

pre = y < x

(1) z <− x - y
(2) z <− z * 2

post = 0 <= z

and

Type variables: <none>

Context : M.f

pre = ! y < x

(1) z <− y - x
(2) z <− z * 2

post = 0 <= z

while⊚

Syntax: while I. Here I is an invariant (formula), which may reference variables of the
two programs, interpreted in their memories. If the goal’s conclusion is a pRHL statement
judgement whose programs both end with while statements, reduce the goal to two subgoals
whose conclusions are pRHL statement judgements:

• One whose first and second programs are the bodies of the first and second while statements,
whose precondition is the conjunction of I and the while statements’ boolean expressions
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(the first of which is interpreted in memory &1, and the second of which is interpreted in &2)
and whose postcondition is the conjunction of I and the assertion that the while statements’
boolean expressions (interpreted in the appropriate memories) are equivalent.

• One whose precondition is the original goal’s precondition, whose first and second programs
are all the results of removing the while statements from the two programs, and whose
postcondition is the conjunction of:

– the conjunction of I and the assertion that the while statements’ boolean expressions
are equivalent; and

– the assertion that, for all values of the variables modified by the while statements, if
the while statements’ boolean expressions don’t hold, but I holds, then the original
goal’s postcondition holds (in I, the while statements’ boolean expressions, and the
postcondition, variables modified by the while statements are replaced by universally
quantified identifiers; otherwise, the boolean expressions are interpreted in the pro-
gram’s respective memories, and the memory references of I and the postcondition
are maintained).

For example, if the current goal is

Type variables: <none>

n : int

&1 (left ) : M.f
&2 (right) : N.f

pre = ={x, y} /\ y{1} = n

z <− 0 (1--) z <− 1
while (0 < x) { (2--) i <− 1

z <− z + 1 (2.1)
x <− x - 1 (2.2)

} (2--)
(3--) while (i <= x) {
(3.1) z <− z + 2
(3.2) i <− i + 1
(3--) }

post = (z{1} + y{1} - n) * 2 + 1 = z{2} + y{2} - n

then running

while (x{1} - 1 = x{2} - i{2} /\ z{1} * 2 + 1 = z{2}).

produces the goals

Type variables: <none>

n : int

&1 (left ) : M.f
&2 (right) : N.f

pre =
(x{1} - 1 = x{2} - i{2} /\ z{1} * 2 + 1 = z{2}) /\
0 < x{1} /\ i{2} <= x{2}

z <− z + 1 (1) z <− z + 2
x <− x - 1 (2) i <− i + 1



CHAPTER 3. TACTICS 91

post =
(x{1} - 1 = x{2} - i{2} /\ z{1} * 2 + 1 = z{2}) /\
(0 < x{1} <=> i{2} <= x{2})

and

Type variables: <none>

n : int

&1 (left ) : M.f
&2 (right) : N.f

pre = ={x, y} /\ y{1} = n

z <− 0 (1) z <− 1
(2) i <− 1

post =
((x{1} - 1 = x{2} - i{2} /\ z{1} * 2 + 1 = z{2}) /\
(0 < x{1} <=> i{2} <= x{2})) /\

forall (x_L z_L i_R z_R : int),
! 0 < x_L =>
! i_R <= x{2} =>
x_L - 1 = x{2} - i_R /\ z_L * 2 + 1 = z_R =>
(z_L + y{1} - n) * 2 + 1 = z_R + y{2} - n

Syntax: while{1} I v | while{2} I v. Here I is an invariant (formula) and v is a termination
variant integer expression, both of which may reference variables of the two programs, interpreted
in their memories. If the goal’s conclusion is a pRHL statement judgement whose designated
program (1 or 2) ends with a while statement, reduce the goal to two subgoals;

• One whose conclusion is a pHL statement judgement, saying that running the body of the
while statement in a memory in which I holds and the while statement’s boolean expression
is true is guaranteed to result in termination in a memory in which I holds and in which
the value of the variant expression v has decreased by at least 1. (More precisely, the pHL
statement judgment is universally quantified by the memory of the non-designated program
and the initial value of v. References to the variables of the nondesignated program in I
and v are interpreted in this memory; reference to the variables of the designed program
have their memory references removed.)

• One whose conclusion is a pRHL statement judgement whose precondition is the original
goal’s precondition, whose designated program is the result of removing the while statement
from the original designated program, whose other program is unchanged, and whose
postcondition is the conjunction of I and the assertion that, for all values of the variables
modified by the while statement, that the conjunction of the following formulas holds:

– the assertion that, if I holds, but the variant expression v is not positive, then the
while statement’s boolean expression is false;

– the assertion that, if the while statement’s boolean expression doesn’t hold, but I
holds, then the original goal’s postcondition holds.

For example, if the current goal is

Type variables: <none>

&1 (left ) : M.f
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&2 (right) : N.f

pre = ={n} /\ 0 <= n{1}

x <− 0 (1--)
i <− 0 (2--)
while (i < n) { (3--)

x <− x + (i + 1) (3.1)
i <− i + 1 (3.2)

} (3--)

post = x{1} <= n{2} * n{2}

then running

while{1} (0 <= i{1} <= n{1} /\ x{1} <= i{1} * i{1}) (n{1} - i{1}).

produces the goals

Type variables: <none>

forall _ (z : int),
phoare[ x <− x + (i + 1); i <− i + 1 :

((0 <= i <= n /\ x <= i * i) /\ i < n) /\ n - i = z ==>
(0 <= i <= n /\ x <= i * i) /\ n - i < z] = 1%r

and

Type variables: <none>

&1 (left ) : M.f
&2 (right) : N.f

pre = ={n} /\ 0 <= n{1}

x <− 0 (1)
i <− 0 (2)

post =
(0 <= i{1} <= n{1} /\ x{1} <= i{1} * i{1}) /\
forall (i_L x_L : int),

(0 <= i_L <= n{1} /\ x_L <= i_L * i_L =>
n{1} - i_L <= 0 => ! i_L < n{1}) /\

(! i_L < n{1} =>
0 <= i_L <= n{1} /\ x_L <= i_L * i_L => x_L <= n{2} * n{2})

Syntax: while I. Here I is an invariant (formula), which may reference variables of the program.
If the goal’s conclusion is an HL statement judgement ending with a while statement, reduce the
goal to two subgoals whose conclusions are HL statement judgements:

• One whose program is the body of the while statement, whose precondition is the conjunction
of I and the while statement’s boolean expression, and whose postcondition is I.

• One whose precondition is the original goal’s precondition, whose program is the result of
removing the while statement from the original program, and whose postcondition is the
conjunction of:

– I; and
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– the assertion that, for all values of the variables modified by the while statement, if
the while statement’s boolean expression doesn’t hold, but I holds, then the original
goal’s postcondition holds (in I, the while statement’s boolean expression, and the
postcondition, variables modified by the while statement are replaced by universally
quantified identifiers).

For example, if the current goal is

Type variables: <none>

m : int

Context : M.f

pre = m = n /\ 0 <= n

(1--) x <− 0
(2--) i <− 0
(3--) while (i < n) {
(3.1) x <− x + (i + 1)
(3.2) i <− i + 1
(3--) }

post = x <= m * m

then running

while (0 <= i <= n /\ x <= i * i).

produces the goals

Type variables: <none>

m : int

Context : M.f

pre = (0 <= i <= n /\ x <= i * i) /\ i < n

(1) x <− x + (i + 1)
(2) i <− i + 1

post = 0 <= i <= n /\ x <= i * i

and

Type variables: <none>

m : int

Context : M.f

pre = m = n /\ 0 <= n

(1) x <− 0
(2) i <− 0

post =
(0 <= i <= n /\ x <= i * i) /\
forall (i0 x0 : int),

! i0 < n => 0 <= i0 <= n /\ x0 <= i0 * i0 => x0 <= m * m
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Syntax: while I v. pHL version...

call⊚

When describing the variants of this tactic, we only consider procedure call assignments whose
left-hand sides consist of single identifiers. The generalization to multiple assignment, when
values of tuple types are returned, is straightforward.

Syntax: call (_ : P ==> Q). If the goal’s conclusion is a pRHL statement judgement whose
programs end with procedure calls or procedure call assignments (resp., an HL statement
judgement whose program ends with a procedure call or procedure call assignment), then
generate two subgoals:

• One whose conclusion is a pRHL judgement (resp., HL judgement) whose precondition
is P , whose procedures are the procedures being called (resp., procedure is the procedure
being called), and whose postcondition is Q.

• One whose conclusion is a pRHL statement judgement (resp., HL statement judgement)
whose precondition is the original goal’s precondition, whose programs are (resp., program
is) the result of removing the procedure calls (resp., call) from the programs (resp., program),
and whose postcondition is the conjunction of

– the result of replacing the procedures’ (resp., procedure’s) parameter(s) by their actual
argument(s) in P ; and

– the assertion that, for all values of the global variable(s) modified by the procedures
(resp., procedure) and the results (resp., result) of the procedure calls (resp., procedure
call), if Q holds (where these quantified identifiers have been substituted for the
modified variables and procedure results), then the original goal’s postcondition holds
(where the modified global variables and occurrences of the variables (resp., variable)
(if any) to which the results of the procedure calls are (resp., result of the procedure
call is) assigned have been replaced by the appropriate quantified identifiers).

For example, if the current goal is

Type variables: <none>

&1 (left ) : M.g
&2 (right) : N.g

pre = ={u}

M.x <− 5 (1) N.x <− -5
z <@ M.f(u) (2) z <@ N.f(u)

post = z{1} + M.x{1} = z{2} - N.x{2}

and the procedures M.f and N.f have a single parameter, y, then running

call (_ : ={y} /\ M.x{1} = -N.x{2} ==> ={res} /\ M.x{1} = -N.x{2}).

produces the goals

Type variables: <none>

pre = ={y} /\ M.x{1} = -N.x{2}

M.f ~ N.f

post = ={res} /\ M.x{1} = -N.x{2}
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and
Type variables: <none>

&1 (left ) : M.g
&2 (right) : N.g

pre = ={u}

M.x <− 5 (1) N.x <− -5

post =
(={u} /\ M.x{1} = -N.x{2}) &&
forall (result_L result_R x_L x_R : int),

result_L = result_R /\ x_L = -x_R =>
result_L + x_L = result_R - x_R

Alternatively, a proof term whose conclusion is a pRHL or HL judgement involving the proce-
dure(s) called at the end(s) of the program(s) may be supplied as the argument to call, in which
case only the second subgoal need be generated.
For example, in the start-goal of the preceding example, if the lemma M_N_f is

lemma M_N_f :
equiv[M.f ~ N.f :

={y} /\ M.x{1} = -N.x{2} ==> ={res} /\ M.x{1} = -N.x{2}].

then running
call M_N_f.

produces the goal
Type variables: <none>

&1 (left ) : M.g
&2 (right) : N.g

pre = ={u}

M.x <− 5 (1) N.x <− -5

post =
(={u} /\ M.x{1} = -N.x{2}) &&
forall (result_L result_R x_L x_R : int),

result_L = result_R /\ x_L = -x_R =>
result_L + x_L = result_R - x_R

Syntax: call{1} (_ : P ==> Q) | call{2} (_ : P ==> Q). If the goal’s conclusion is a pRHL
statement judgement whose designated program ends with a procedure call, then generate two
subgoals:

• One whose conclusion is a pHL judgement whose precondition is P , whose procedure is the
procedure being called, whose postcondition is Q, and whose bound part specifies equality
with probability 1. (Consequently, P and Q may not mention &1 and &2.)

• One whose conclusion is a pRHL statement judgement whose precondition is the original
goal’s precondition, whose programs are the result of removing the procedure call from the
designated program, and leaving the other program unchanged, and whose postcondition is
the conjunction of
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– the result of replacing the procedure’s parameter(s) by their actual argument(s) in P ;
and

– the assertion that, for all values of the global variable(s) modified by the procedure
and the result of the procedure call, if Q holds (where these quantified identifiers have
been substituted for the modified variables and procedure result), then the original
goal’s postcondition holds (where the modified global variables and occurrences the
variable (if any) to which the result of the procedure call is assigned have been replaced
by the appropriate quantified identifiers).

For example, if the current goal is

Type variables: <none>

x2: int

&1 (left ) : M.g
&2 (right) : N.g

pre = x2 = N.x{2} /\ N.x{2} = u{2} /\ u{1} %% 2 = u{2} %% 2

M.x <− u (1)
M.f(7) (2)

post = (M.x{1} %% 2 = 0) = (N.x{2} %% 2 = 0)

then running

call{1} (_ : M.x %% 2 = x2 %% 2 ==> M.x %% 2 = x2 %% 2).

produces the goals

Type variables: <none>

x2: int

pre = M.x %% 2 = x2 %% 2

M.f
[=] 1%r

post = M.x %% 2 = x2 %% 2

and

Type variables: <none>

x2: int

&1 (left ) : M.g
&2 (right) : N.g

pre = x2 = N.x{2} /\ N.x{2} = u{2} /\ u{1} %% 2 = u{2} %% 2

M.x <− u (1)

post =
M.x{1} %% 2 = x2 %% 2 &&
forall (x_L : int),

x_L %% 2 = x2 %% 2 => (x_L %% 2 = 0) = (N.x{2} %% 2 = 0)



CHAPTER 3. TACTICS 97

Alternatively, a proof term whose conclusion is a pHL judgement specifying equality with
probability 1 and involving the procedure called at the end of the designated program may be
supplied as the argument to call, in which case only the second subgoal need be generated.

For example, in the start-goal of the preceding example, if the lemma M_f is

lemma M_f (z : int) :
phoare [M.f : M.x %% 2 = z %% 2 ==> M.x %% 2 = z %% 2] = 1%r.

then running

call{1} (M_f x2).

produces the goal

Type variables: <none>

x2: int

&1 (left ) : M.g
&2 (right) : N.g

pre = x2 = N.x{2} /\ N.x{2} = u{2} /\ u{1} %% 2 = u{2} %% 2

M.x <− u (1)

post =
M.x{1} %% 2 = x2 %% 2 &&
forall (x_L : int),

x_L %% 2 = x2 %% 2 => (x_L %% 2 = 0) = (N.x{2} %% 2 = 0)

Syntax: call (_ : I). If the conclusion is a pRHL statement judgement whose programs end
with calls to concrete procedures (resp., an HL statement judgement whose program ends with a
call to a concrete procedure), then use the specification argument to call generated from the
invariant I, and automatically apply proc to its first subgoal. In the pRHL case, its precondition
will assume equality of the procedures’ parameters, and its postcondition will assert equality of
the results of the procedure calls.

For example, if the current goal is

Type variables: <none>

&1 (left ) : M.g
&2 (right) : N.g

pre = ={u}

M.x <− 5 (1) N.x <− -5
z <@ M.f(u) (2) z <@ N.f(u)

post = z{1} + M.x{1} = z{2} - N.x{2}

and modules M and N contain

var x : int
proc f(y : int) : int = {

x <− x + y;
return x;

}

and
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var x : int
proc f(y : int) : int = {

x <− x - y;
return -x;

}

respectively, then running

call (_ : M.x{1} = -N.x{2}).

produces the goals

Type variables: <none>

&1 (left ) : M.f
&2 (right) : N.f

pre = ={y} /\ M.x{1} = -N.x{2}

M.x <− M.x + y (1) N.x <− N.x - y

post = M.x{1} = -N.x{2} /\ M.x{1} = -N.x{2}

and

Type variables: <none>

&1 (left ) : M.g
&2 (right) : N.g

pre = ={u}

M.x <− 5 (1) N.x <− -5

post =
(={u} /\ M.x{1} = -N.x{2}) &&
forall (result_L result_R x_L x_R : int),

result_L = result_R /\ x_L = -x_R =>
result_L + x_L = result_R - x_R

Syntax: call (_ : I). If the conclusion is a pRHL statement judgement whose programs end
with calls of the same abstract procedure (resp., an HL statement judgement whose program
ends with a call to an abstract procedure), then use the specification argument to call generated
from the invariant I, and automatically apply proc I to its first subgoal, pruning the first two
subgoals the application generates, because their conclusions consist of ambient logic formulas
that are true by construction. In the pRHL case, its precondition will assume equality of the
procedure’s parameters and of the global variables of the module containing the procedure, and
its postcondition will assume equality of the results of the procedure calls and of the global
variables of the containing module.

For example, given the declarations

module type OR = {
proc init(i : int) : unit
proc f1() : unit
proc f2() : unit

}.

module Or : OR = {
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var x : int
proc init(i : int) : unit = {

x <− i;
}
proc f1() : unit = {

x <− x + 2;
}
proc f2() : unit = {

x <− x - 2;
}

}.

module type T(O : OR) = {
proc g() : unit {O.f1 O.f2}

}.

if the current goal is

Type variables: <none>

Adv: T{Or}

&1 (left ) : M(Adv).h
&2 (right) : N(Adv).h

pre = ={y, glob Adv} /\ Or.x{1} %% 2 = 0 /\ Or.x{2} %% 2 = 0

Adv(Or).g() (1) Adv(Or).g()

post = Or.x{1} %% 2 = 0 /\ Or.x{2} %% 2 = 0

then running

call (_ : Or.x{1} %% 2 = 0 /\ Or.x{2} %% 2 = 0).

produces the goals

Type variables: <none>

Adv: T{Or}

pre = true /\ Or.x{1} %% 2 = 0 /\ Or.x{2} %% 2 = 0

Or.f1 ~ Or.f1

post = ={res} /\ Or.x{1} %% 2 = 0 /\ Or.x{2} %% 2 = 0

and

Type variables: <none>

Adv: T{Or}

pre = true /\ Or.x{1} %% 2 = 0 /\ Or.x{2} %% 2 = 0

Or.f2 ~ Or.f2

post = ={res} /\ Or.x{1} %% 2 = 0 /\ Or.x{2} %% 2 = 0

Syntax: call (_ : B, I). If the conclusion is a pRHL statement judgement whose programs end
with calls of the same abstract procedure, then use the specification argument to call generated
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from the bad event B and invariant I, and automatically apply proc B I to its first subgoal,
pruning the first two subgoals the application generates, because their conclusions consist of
ambient logic formulas that are true by construction, and pruning the next goal (showing the
losslessness of the abstract procedure given the losslessness of the abstract oracles it uses), if
trivial suffices to solve it. The specification’s precondition will assume equality of the procedure’s
parameters and of the global variables of the module containing the procedure as well as I, and
its postcondition will assert I and the equality of the results of the procedure calls and of the
global variables of the containing module—but only when B does not hold.

For example, given the declarations

module type OR = {
proc init() : unit
proc qry(x : int) : int

}.

op low : int = -100.
op upp : int = 100.

module Or1 : OR = {
var qry, rsp : int
var queried : bool

proc init() = {
qry <$ [low .. upp]; rsp <$ [low .. upp];
queried <− false;

}

proc qry(x : int) : int = {
var y : int;
if (x = qry) {

y <− rsp;
queried <− true;

} else {
y <$ [low .. upp];

}
return y;

}
}.

module Or2 : OR = {
var qry : int
var queried : bool

proc init() = {
qry <$ [low .. upp];
queried <− false;

}

proc qry(x : int) : int = {
var y : int;
y <$ [low .. upp];
queried <− queried \/ x = qry;
return y;

}
}.

module type ADV(O : OR) = {
proc * f() : bool {O.qry}

}.
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if the current goal is

Type variables: <none>

Adv: ADV{Or1, Or2}
ll_Adv_f: forall (O <: OR{Adv}),

islossless O.qry => islossless Adv(O).f

&1 (left ) : M(Adv).h
&2 (right) : N(Adv).h

pre = Or1.qry{1} = Or2.qry{2}

b <@ Adv(Or1).f() (1) b <@ Adv(Or2).f()

post = !Or2.queried{2} => ={b}

then running

call (_ : Or2.queried, (Or1.qry{1} = Or2.qry{2})).

produces the goals

Type variables: <none>

Adv: ADV{Or1, Or2}
ll_Adv_f: forall (O <: OR{Adv}),

islossless O.qry => islossless Adv(O).f

pre = !Or2.queried{2} /\ ={x} /\ Or1.qry{1} = Or2.qry{2}

Or1.qry ~ Or2.qry

post = !Or2.queried{2} => ={res} /\ Or1.qry{1} = Or2.qry{2}

and

Type variables: <none>

Adv: ADV{Or1, Or2}
ll_Adv_f: forall (O <: OR{Adv}),

islossless O.qry => islossless Adv(O).f

forall &2, Or2.queried{2} => islossless Or1.qry

and

Type variables: <none>

Adv: ADV{Or1, Or2}
ll_Adv_f: forall (O <: OR{Adv}),

islossless O.qry => islossless Adv(O).f

forall _,
phoare[ Or2.qry : Or2.queried /\ true ==> Or2.queried /\ true] = 1%r

and

Type variables: <none>

Adv: ADV{Or1, Or2}
ll_Adv_f: forall (O <: OR{Adv}),

islossless O.qry => islossless Adv(O).f
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&1 (left ) : M(Adv).h
&2 (right) : N(Adv).h

pre = Or1.qry{1} = Or2.qry{2}

post =
(!Or2.queried{2} => true /\ Or1.qry{1} = Or2.qry{2}) &&
forall (result_L result_R : bool) (Adv_L Adv_R : (glob Adv))

(queried_R : bool),
(!queried_R =>
result_L = result_R /\
Adv_L = Adv_R /\ Or1.qry{1} = Or2.qry{2}) =>

!queried_R => result_L = result_R

Syntax: call (_ : B, I, J). If the conclusion is a pRHL statement judgement whose programs
end with calls of the same abstract procedure, then use the specification argument to call
generated from the bad event B and invariants I and J , and automatically apply proc B I J to its
first subgoal, pruning the first two subgoals the application generates, because their conclusions
consist of ambient logic formulas that are true by construction, and pruning the next goal
(showing the losslessness of the abstract procedure given the losslessness of the abstract oracles it
uses), if trivial suffices to solve it. The specification’s precondition will assume equality of the
procedure’s parameters and of the global variables of the module containing the procedure as
well as I, and its postcondition will assert

• I and the equality of the results of the procedure calls and of the global variables of the
containing module—if B does not hold; and

• J—if B does hold.

For example, given the declarations of the preceding example if the current goal is

Type variables: <none>

Adv: ADV{Or1, Or2}
ll_Adv_f: forall (O <: OR{Adv}),

islossless O.qry => islossless Adv(O).f

&1 (left ) : M(Adv).h
&2 (right) : N(Adv).h

pre = Or1.qry{1} = Or2.qry{2} /\ Or1.queried{1} = Or2.queried{2}

b <@ Adv(Or1).f() (1) b <@ Adv(Or2).f()

post =
Or1.queried{1} = Or2.queried{2} /\ (!Or2.queried{2} => ={b})

then running

call (_ :
Or2.queried,
(Or1.qry{1} = Or2.qry{2} /\ Or1.queried{1} = Or2.queried{2}),
(Or1.queried{1} = Or2.queried{2})).

produces the goals

Type variables: <none>
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Adv: ADV{Or1, Or2}
ll_Adv_f: forall (O <: OR{Adv}),

islossless O.qry => islossless Adv(O).f

pre =
!Or2.queried{2} /\
={x} /\
Or1.qry{1} = Or2.qry{2} /\ Or1.queried{1} = Or2.queried{2}

Or1.qry ~ Or2.qry

post =
if Or2.queried{2} then Or1.queried{1} = Or2.queried{2}
else

={res} /\
Or1.qry{1} = Or2.qry{2} /\ Or1.queried{1} = Or2.queried{2}

and

Type variables: <none>

Adv: ADV{Or1, Or2}
ll_Adv_f: forall (O <: OR{Adv}),

islossless O.qry => islossless Adv(O).f

forall &2,
Or2.queried{2} =>
phoare[ Or1.qry :

Or1.queried = Or2.queried{2} ==>
Or1.queried = Or2.queried{2}] = 1%r

and

Type variables: <none>

Adv: ADV{Or1, Or2}
ll_Adv_f: forall (O <: OR{Adv}),

islossless O.qry => islossless Adv(O).f

forall &1,
phoare[ Or2.qry :

Or2.queried /\ Or1.queried{1} = Or2.queried ==>
Or2.queried /\ Or1.queried{1} = Or2.queried] = 1%r

and

Type variables: <none>

Adv: ADV{Or1, Or2}
ll_Adv_f: forall (O <: OR{Adv}),

islossless O.qry => islossless Adv(O).f

&1 (left ) : M(Adv).h
&2 (right) : N(Adv).h

pre = Or1.qry{1} = Or2.qry{2} /\ Or1.queried{1} = Or2.queried{2}

post =
(if Or2.queried{2} then Or1.queried{1} = Or2.queried{2}
else

true /\
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Or1.qry{1} = Or2.qry{2} /\ Or1.queried{1} = Or2.queried{2}) &&
forall (result_L result_R : bool) (Adv_L : (glob Adv))

(queried_L : bool) (Adv_R : (glob Adv)) (queried_R : bool),
if queried_R then queried_L = queried_R
else

result_L = result_R /\
Adv_L = Adv_R /\
Or1.qry{1} = Or2.qry{2} /\ queried_L = queried_R =>

queried_L = queried_R /\ (!queried_R => result_L = result_R)

3.4.2 Tactics for Transforming Programs
Unless otherwise specified, the tactics of this subsection only apply to goals whose conclusions
are pRHL, pHL or HL statement judgements, reducing such a goal to a single subgoal in which
only the program(s) of those statement judgements have changed.

Many of these tactics take code positions consisting of a sequence of positive numerals
separated by dots. E.g., 2.1.3 says to go to the statement 2 of the program, then to substatement
1 of it, then to sub-substatement 3 of it. We use the variable c to range over code positions.

swap⊚

All versions of the tactic work for pRHL (an optional side can be given), pHL and HL statement
judgements. We’ll describe their operation in terms of a single program (list of statements).

Syntax: swap n m l. Fails unless 1 ≤ n < m ≤ l and the program has at least l statements.
Swaps the statement block from positions n through m − 1 with the statement block from m
through l, failing if these blocks of statements aren’t independent.

Syntax: swap [n..m] k. Fails unless 1 ≤ n ≤ m and the program has at least m statements.

• If k is non-negative, move the statement block from n through m forward k positions,
failing if the program doesn’t have at least m+ k statements or if the swapped statements
blocks aren’t independent.

• If k is negative, move the statement block from n through m backward −k positions, failing
if n+ k < 1 or if the swapped statement blocks aren’t independent.

Syntax: swap n k. Equivalent to swap [n..n] k.

Syntax: swap k. If k is non-negative, equivalent to swap 1 k. If k is negative, equivalent to
swap n k, where n is the length of the program.

For example, suppose the current goal is

Type variables: <none>

&1 (left ) : M.f [programs are in sync]
&2 (right) : M.f

pre = ={M.x, M.y, M.z, M.w}

(1) M.x <− true
(2) M.y <− false
(3) M.z <− true
(4) M.w <− false

post = ={M.x, M.y, M.z, M.w}

Then running
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swap 1 3 4.

produces goal

Type variables: <none>

&1 (left ) : M.f [programs are in sync]
&2 (right) : M.f

pre = ={M.x, M.y, M.z, M.w}

(1) M.z <− true
(2) M.w <− false
(3) M.x <− true
(4) M.y <− false

post = ={M.x, M.y, M.z, M.w}

From which running

swap 2 2.

produces goal

Type variables: <none>

&1 (left ) : M.f [programs are in sync]
&2 (right) : M.f

pre = ={M.x, M.y, M.z, M.w}

(1) M.z <− true
(2) M.x <− true
(3) M.y <− false
(4) M.w <− false

post = ={M.x, M.y, M.z, M.w}

From which running

swap{1} [3 .. 4] -1.

produces goal

Type variables: <none>

&1 (left ) : M.f
&2 (right) : M.f

pre = ={M.x, M.y, M.z, M.w}

M.z <− true (1) M.z <− true
M.y <− false (2) M.x <− true
M.w <− false (3) M.y <− false
M.x <− true (4) M.w <− false

post = ={M.x, M.y, M.z, M.w}

From which running
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swap 2.

produces goal

Type variables: <none>

&1 (left ) : M.f
&2 (right) : M.f

pre = ={M.x, M.y, M.z, M.w}

M.y <− false (1) M.x <− true
M.w <− false (2) M.y <− false
M.z <− true (3) M.z <− true
M.x <− true (4) M.w <− false

post = ={M.x, M.y, M.z, M.w}

From which running

swap{2} -1.

produces goal

Type variables: <none>

&1 (left ) : M.f
&2 (right) : M.f

pre = ={M.x, M.y, M.z, M.w}

M.y <− false (1) M.x <− true
M.w <− false (2) M.y <− false
M.z <− true (3) M.w <− false
M.x <− true (4) M.z <− true

post = ={M.x, M.y, M.z, M.w}

inline⊚

Syntax: inline M1.p1 · · · Mn.pn. Inline the selected concrete procedures in both programs, with
pRHL, and in the program, with HL and pHL, until no more inlining of these procedures is
possible.
To inline a procedure call, the procedure’s parameters are assigned the values of their arguments
(fresh parameter identifiers are used, as necessary, to avoid naming conflicts). This is followed by
the body of the procedure. Finally, the procedure’s return value is assigned to the identifiers (if
any) to which the procedure call’s result is assigned.

Syntax: inline{1} M1.p1 · · · Mn.pn | inline{2} M1.p1 · · · Mn.pn. Do the inlining in just the
first or second program, in the pRHL case.

Syntax: inline* | inline{1}* | inline{2}*. Inline all concrete procedures, continuing until no
more inlining is possible.

Syntax: inline occs M.p | inline{1} occs M.p | inline{2} occs M.p. Inline just the specified
occurrences of M .p, where occs is a parenthesized nonempty sequence of positive numbers
(n1 · · · nl). E.g., (1 3) means the first and third occurrences of the procedure. In the pRHL
case, a side {1} or {2} must be specified.
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For example, given the declarations

module M = {
var y : int
proc f(x : int) : int = {

x <− x + 1;
return x * 2;

}
proc g(x : int) : bool = {

y <@ f(x - 1);
return x + y + 1 = 3;

}
proc h(x : int) : bool = {

var b : bool;
b <@ g(x + 1);
return !b;

}
}.

if the current goal is

Type variables: <none>

&1 (left ) : M.h [programs are in sync]
&2 (right) : M.h

pre = ={x}

(1) b <@ M.g(x + 1)

post = (!b{1}) = !b{2}

then running

inline M.g.

produces the goal

Type variables: <none>

&1 (left ) : M.h [programs are in sync]
&2 (right) : M.h

pre = ={x}

(1) x0 <− x + 1
(2) M.y <@ M.f(x0 - 1)
(3) b <− x0 + M.y + 1 = 3

post = (!b{1}) = !b{2}

From which running

inline{2} M.f.

produces the goal

Type variables: <none>

&1 (left ) : M.h
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&2 (right) : M.h

pre = ={x}

x0 <− x + 1 (1) x0 <− x + 1
M.y <@ M.f(x0 - 1) (2) x1 <− x0 - 1
b <− x0 + M.y + 1 = 3 (3) x1 <− x1 + 1

(4) M.y <− x1 * 2
(5) b <− x0 + M.y + 1 = 3

post = (!b{1}) = !b{2}

From which running

inline M.f.

produces the goal

Type variables: <none>

&1 (left ) : M.h [programs are in sync]
&2 (right) : M.h

pre = ={x}

(1) x0 <− x + 1
(2) x1 <− x0 - 1
(3) x1 <− x1 + 1
(4) M.y <− x1 * 2
(5) b <− x0 + M.y + 1 = 3

post = (!b{1}) = !b{2}

And, if the current goal is

Type variables: <none>

&1 (left ) : M.h [programs are in sync]
&2 (right) : M.h

pre = ={x}

(1) b <@ M.g(x + 1)

post = (!b{1}) = !b{2}

then running

inline*.

produces the goal

Type variables: <none>

&1 (left ) : M.h [programs are in sync]
&2 (right) : M.h

pre = ={x}

(1) x0 <− x + 1
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(2) x1 <− x0 - 1
(3) x1 <− x1 + 1
(4) M.y <− x1 * 2
(5) b <− x0 + M.y + 1 = 3

post = (!b{1}) = !b{2}

rcondt⊚

Syntax: rcondt n. If the goal’s conclusion is an HL statement judgement whose nth statement
is an if statement, reduce the goal to two subgoals.

• One whose concludion is an HL statement judgement whose precondition is the original
goal’s precondition, program is the first n− 1 statements of the original goal’s program,
and postcondition is the boolean expression of the if statement.

• One whose conclusion is an HL statement judgement that’s the same as that of the original
goal except that the if statement has been replaced by its then part.

For example, if the current goal is

Type variables: <none>

Context : M.f

pre = true

(1--) x <$ {0,1}
(2--) y <− x ^^ x
(3--) if (!y) {
(3.1) z <− true
(3--) } else {
(3?1) z <− false
(3--) }

post = z

then running

rcondt 3.

produces the goals

Type variables: <none>

Context : M.f

pre = true

(1) x <$ {0,1}
(2) y <− x ^^ x

post = !y

and

Type variables: <none>



CHAPTER 3. TACTICS 110

Context : M.f

pre = true

(1) x <$ {0,1}
(2) y <− x ^^ x
(3) z <− true

post = z

Syntax: rcondt{1} n | rcondt{2} n. If the goal’s conclusion is a pRHL statement judgement
where the nth statement of the designated program is an if statement, reduce the goal to two
subgoals.

• One whose conclusion is an HL statement judgement whose precondition is the original
goal’s precondition, program is the first n− 1 statements of the original goal’s designated
program, and postcondition is the boolean expression of the if statement. Actually, the
HL statement judgement is universally quantified by a memory of the non-designated
program, and references in the precondition to variables of the non-designated program are
interpreted in that memory.

• One whose conclusion is a pRHL statement judgement that’s the same as that of the
original goal except that the if statement has been replaced by its then part.

For example, if the current goal is

Type variables: <none>

&1 (left ) : N.f
&2 (right) : M.f

pre = N.x{1}

(1--) x <$ {0,1}
(2--) y <− x ^^ x
(3--) if (!y) {
(3.1) z <− true
(3--) } else {
(3?1) z <− false
(3--) }

post = N.x{1} = z{2}

then running

rcondt{2} 3.

produces the goals

Type variables: <none>

forall &m, hoare[ x <$ ${0,1}; y <− x ^^ x : N.x{m} ==> !y]

and

Type variables: <none>

&1 (left ) : N.f
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&2 (right) : M.f

pre = N.x{1}

(1) x <$ {0,1}
(2) y <− x ^^ x
(3) z <− true

post = N.x{1} = z{2}

Syntax: rcondt n. If the goal’s conclusion is an HL statement judgement whose nth statement
is a while statement, reduce the goal to two subgoals.

• One whose concludion is an HL statement judgement whose precondition is the original
goal’s precondition, program is the first n− 1 statements of the original goal’s program,
and postcondition is the boolean expression of the while statement.

• One whose conclusion is an HL statement judgement that’s the same as that of the original
goal except that the while statement has been replaced by its body.

For example, if the current goal is

Type variables: <none>

Context : M.f

pre = true

(1--) i <− 0
(2--) while (i < 10) {
(2.1) i <− i + 1
(2--) }
(3--) while (i < 20) {
(3.1) i <− i + 2
(3--) }

post = i = 20

then running

rcondt 3.

produces the goals

Type variables: <none>

Context : M.f

pre = true

(1--) i <− 0
(2--) while (i < 10) {
(2.1) i <− i + 1
(2--) }

post = i < 20

and
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Type variables: <none>

Context : M.f

pre = true

(1--) i <− 0
(2--) while (i < 10) {
(2.1) i <− i + 1
(2--) }
(3--) i <− i + 2
(4--) while (i < 20) {
(4.1) i <− i + 2
(4--) }

post = i = 20

Syntax: rcondt{1} n | rcondt{2} n. If the goal’s conclusion is a pRHL statement judgement
where the nth statement of the designated program is a while statement, reduce the goal to two
subgoals.

• One whose conclusion is an HL statement judgement whose precondition is the original
goal’s precondition, program is the first n− 1 statements of the original goal’s designated
program, and postcondition is the boolean expression of the while statement. Actually,
the HL statement judgement is universally quantified by a memory of the non-designated
program, and references in the precondition to variables of the non-designated program are
interpreted in that memory.

• One whose conclusion is a pRHL statement judgement that’s the same as that of the
original goal except that the while statement has been replaced by its body.

For example, if the current goal is

Type variables: <none>

&1 (left ) : M.f
&2 (right) : N.f

pre = true

i <− 0 (1--) i <− 0
while (i < 10) { (2--) while (i < 10) {

i <− i + 1 (2.1) i <− i + 1
} (2--) }
while (i < 20) { (3--) i <− i + 2

i <− i + 2 (3.1)
} (3--)

(4--) while (i < 20) {
(4.1) i <− i + 2
(4--) }

post = ={i}

then running

rcondt{1} 3.

produces the goals
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Type variables: <none>

forall _, hoare[ i <− 0; while (i < 10) {· · ·} : true ==> i < 20]

and

Type variables: <none>

&1 (left ) : M.f
&2 (right) : N.f

pre = true

i <− 0 (1--) i <− 0
while (i < 10) { (2--) while (i < 10) {

i <− i + 1 (2.1) i <− i + 1
} (2--) }
i <− i + 2 (3--) i <− i + 2
while (i < 20) { (4--) while (i < 20) {

i <− i + 2 (4.1) i <− i + 2
} (4--) }

post = ={i}

rcondf⊚

Syntax: rcondf n. If the goal’s conclusion is an HL statement judgement whose nth statement
is an if statement, reduce the goal to two subgoals.

• One whose concludion is an HL statement judgement whose precondition is the original
goal’s precondition, program is the first n− 1 statements of the original goal’s program,
and postcondition is the negation of the boolean expression of the if statement.

• One whose conclusion is an HL statement judgement that’s the same as that of the original
goal except that the if statement has been replaced by its else part.

For example, if the current goal is

Type variables: <none>

Context : M.f

pre = true

(1--) x <$ {0,1}
(2--) y <− x ^^ x
(3--) if (y) {
(3.1) z <− true
(3--) } else {
(3?1) z <− false
(3--) }

post = !z

then running

rcondf 3.
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produces the goals

Type variables: <none>

Context : M.f

pre = true

(1) x <$ {0,1}
(2) y <− x ^^ x

post = !y

and

Type variables: <none>

Context : M.f

pre = true

(1) x <$ {0,1}
(2) y <− x ^^ x
(3) z <− false

post = !z

Syntax: rcondf{1} n | rcondf{2} n. If the goal’s conclusion is a pRHL statement judgement
where the nth statement of the designated program is an if statement, reduce the goal to two
subgoals.

• One whose conclusion is an HL statement judgement whose precondition is the original
goal’s precondition, program is the first n− 1 statements of the original goal’s designated
program, and postcondition is the negation of the boolean expression of the if statement.
Actually, the HL statement judgement is universally quantified by a memory of the non-
designated program, and references in the precondition to variables of the non-designated
program are interpreted in that memory.

• One whose conclusion is a pRHL statement judgement that’s the same as that of the
original goal except that the if statement has been replaced by its else part.

For example, if the current goal is

Type variables: <none>

&1 (left ) : N.f
&2 (right) : M.f

pre = !N.x{1}

(1--) x <$ {0,1}
(2--) y <− x ^^ x
(3--) if (y) {
(3.1) z <− true
(3--) } else {
(3?1) z <− false
(3--) }
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post = N.x{1} = z{2}

then running

rcondf{2} 3.

produces the goals

Type variables: <none>

forall &m, hoare[ x <$ ${0,1}; y <− x ^^ x : !N.x{m} ==> !y]

and

Type variables: <none>

&1 (left ) : N.f
&2 (right) : M.f

pre = !N.x{1}

(1) x <$ {0,1}
(2) y <− x ^^ x
(3) z <− false

post = N.x{1} = z{2}

Syntax: rcondf n. If the goal’s conclusion is an HL statement judgement whose nth statement
is a while statement, reduce the goal to two subgoals.

• One whose concludion is an HL statement judgement whose precondition is the original
goal’s precondition, program is the first n− 1 statements of the original goal’s program,
and postcondition is the negation of the boolean expression of the while statement.

• One whose conclusion is an HL statement judgement that’s the same as that of the original
goal except that the while statement has been removed.

For example, if the current goal is

Type variables: <none>

Context : M.f

pre = true

(1--) i <− 0
(2--) while (i < 10) {
(2.1) i <− i + 1
(2--) }
(3--) while (i < 10) {
(3.1) i <− i + 2
(3--) }

post = i = 10

then running

rcondf 3.
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produces the goals

Type variables: <none>

Context : M.f

pre = true

(1--) i <− 0
(2--) while (i < 10) {
(2.1) i <− i + 1
(2--) }

post = ! i < 10

and

Type variables: <none>

Context : M.f

pre = true

(1--) i <− 0
(2--) while (i < 10) {
(2.1) i <− i + 1
(2--) }

post = i = 10

Syntax: rcondf{1} n | rcondf{2} n. If the goal’s conclusion is a pRHL statement judgement
where the nth statement of the designated program is a while statement, reduce the goal to two
subgoals.

• One whose conclusion is an HL statement judgement whose precondition is the original
goal’s precondition, program is the first n− 1 statements of the original goal’s designated
program, and postcondition is the negation of the boolean expression of the while statement.
Actually, the HL statement judgement is universally quantified by a memory of the non-
designated program, and references in the precondition to variables of the non-designated
program are interpreted in that memory.

• One whose conclusion is a pRHL statement judgement that’s the same as that of the
original goal except that the while statement has been removed.

For example, if the current goal is

Type variables: <none>

&1 (left ) : M.f
&2 (right) : N.f

pre = true

i <− 0 (1--) i <− 0
while (i < 10) { (2--) while (i < 10) {

i <− i + 1 (2.1) i <− i + 1
} (2--) }
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while (i < 10) { (3--)
i <− i + 2 (3.1)

} (3--)

post = ={i}

then running

rcondf{1} 3.

produces the goals

Type variables: <none>

forall _, hoare[ i <− 0; while (i < 10) {· · ·} : true ==> ! i < 10]

and

Type variables: <none>

&1 (left ) : M.f
&2 (right) : N.f

pre = true

i <− 0 (1--) i <− 0
while (i < 10) { (2--) while (i < 10) {

i <− i + 1 (2.1) i <− i + 1
} (2--) }

post = ={i}

unroll⊚

Syntax: unroll c. If the goal’s conclusion is an HL statement judgement whose cth statement is
a while statement, then insert before that statement an if statement whose boolean expression
is the while statement’s boolean expression, whose then part is the while statements’s body, and
whose else part is empty.

For example, if the current goal is

Type variables: <none>

Context : M.f

pre = true

(1--) x <− 0
(2--) z <− 0
(3--) while (x < y) {
(3.1) z <− z + x
(3.2) x <− x + 1
(3--) }

post = 0 <= z

then running

unroll 3.
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produces the goal

Type variables: <none>

Context : M.f

pre = true

(1--) x <− 0
(2--) z <− 0
(3--) if (x < y) {
(3.1) z <− z + x
(3.2) x <− x + 1
(3--) }
(4--) while (x < y) {
(4.1) z <− z + x
(4.2) x <− x + 1
(4--) }

post = 0 <= z

And, if the current goal is

Type variables: <none>

Context : M.f

pre = true

(1----) if (0 <= y) {
(1.1--) x <− 0
(1.2--) while (x <> y) {
(1.2.1) x <− x + 1
(1.2--) }
(1----) }

post = 0 <= y

then running

unroll 1.2.

produces the goal

Type variables: <none>

Context : M.f

pre = true

(1----) if (0 <= y) {
(1.1--) x <− 0
(1.2--) if (x <> y) {
(1.2.1) x <− x + 1
(1.2--) }
(1.3--) while (x <> y) {
(1.3.1) x <− x + 1
(1.3--) }
(1----) }
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post = 0 <= y

Syntax: unroll{1} c | unroll{2} c. If the goal’s conclusion is an pRHL statement judgement
where the cth statement of the designated program is a while statement, then insert before that
statement an if statement whose boolean expression is the while statement’s boolean expression,
whose then part is the while statements’s body, and whose else part is empty.

For example, if the current goal is

Type variables: <none>

&1 (left ) : M.f [programs are in sync]
&2 (right) : M.f

pre = ={y}

(1--) x <− 0
(2--) z <− 0
(3--) while (x < y) {
(3.1) z <− z + x
(3.2) x <− x + 1
(3--) }

post = ={z}

then running

unroll{1} 3.

produces the goal

Type variables: <none>

&1 (left ) : M.f
&2 (right) : M.f

pre = ={y}

x <− 0 (1--) x <− 0
z <− 0 (2--) z <− 0
if (x < y) { (3--) while (x < y) {

z <− z + x (3.1) z <− z + x
x <− x + 1 (3.2) x <− x + 1

} (3--) }
while (x < y) { (4--)

z <− z + x (4.1)
x <− x + 1 (4.2)

} (4--)

post = ={z}

from which running

unroll{2} 3.

produces the goal

Type variables: <none>
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&1 (left ) : M.f [programs are in sync]
&2 (right) : M.f

pre = ={y}

(1--) x <− 0
(2--) z <− 0
(3--) if (x < y) {
(3.1) z <− z + x
(3.2) x <− x + 1
(3--) }
(4--) while (x < y) {
(4.1) z <− z + x
(4.2) x <− x + 1
(4--) }

post = ={z}

splitwhile⊚

Syntax: splitwhile c : e. If the goal’s conclusion is an HL statement judgement whose cth
statement is a while statement and e is a well-typed boolean expression in the while statement’s
context, then insert before the while statement a copy of the while statement in which e is added
as a conjunct of the statement’s boolean expression.

For example, if the current goal is

Type variables: <none>

Context : M.f

pre = true

(1--) x <− 0
(2--) z <− 0
(3--) while (x < y) {
(3.1) z <− z + x
(3.2) x <− x + 1
(3--) }

post = 0 <= z

then running

splitwhile 3 : z <= 20.

produces the goal

Type variables: <none>

Context : M.f

pre = true

(1--) x <− 0
(2--) z <− 0
(3--) while (x < y /\ z <= 20) {
(3.1) z <− z + x
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(3.2) x <− x + 1
(3--) }
(4--) while (x < y) {
(4.1) z <− z + x
(4.2) x <− x + 1
(4--) }

post = 0 <= z

Syntax: splitwhile{1} c : e | splitwhile{2} c : e. If the goal’s conclusion is a pRHL statement
judgement where the cth statement of the designated program is a while statement and e is
a well-typed boolean expression in the while statement’s context, then insert before the while
statement a copy of the while statement in which e is added as a conjunct of the statement’s
boolean expression.
For example, if the current goal is

Type variables: <none>

&1 (left ) : M.f [programs are in sync]
&2 (right) : M.f

pre = ={y}

(1--) x <− 0
(2--) z <− 0
(3--) while (x < y) {
(3.1) z <− z + x
(3.2) x <− x + 1
(3--) }

post = ={z}

then running
splitwhile{2} 3 : z <= 20.

produces the goal
Type variables: <none>

&1 (left ) : M.f
&2 (right) : M.f

pre = ={y}

x <− 0 (1--) x <− 0
z <− 0 (2--) z <− 0
while (x < y) { (3--) while (x < y /\ z <= 20) {

z <− z + x (3.1) z <− z + x
x <− x + 1 (3.2) x <− x + 1

} (3--) }
(4--) while (x < y) {
(4.1) z <− z + x
(4.2) x <− x + 1
(4--) }

post = ={z}

from which running
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splitwhile{1} 3 : z <= 20.

produces the goal

Type variables: <none>

&1 (left ) : M.f [programs are in sync]
&2 (right) : M.f

pre = ={y}

(1--) x <− 0
(2--) z <− 0
(3--) while (x < y /\ z <= 20) {
(3.1) z <− z + x
(3.2) x <− x + 1
(3--) }
(4--) while (x < y) {
(4.1) z <− z + x
(4.2) x <− x + 1
(4--) }

post = ={z}

fission⊚

Syntax: fission c!l @ m, n. HL statement judgement version. Fails unless 0 ≤ l and 0 ≤ m ≤ n
and the cth statement of the program is a while statement, and there are at least l statements
right before the while statement, at its level, and the body of the while statement has at least n
statements.
Let

• s1 be the l statements before the while statement at position c;

• e be the boolean expression of the while statement;

• s2 be the first m statements of the body of the while statement;

• s3 be the next n−m statements of the body of the while statement;

• s4 be the rest of the body of the while statement.

Fails unless:

• e doesn’t reference the variables written by s2 and s3;

• s1 and s4 don’t read or write the variables written by s2 and s3;

• s2 and s3 don’t write the variables written by s1 and s4;

• s2 and s3 don’t read or write the variables written by the other.

The tactic replaces

s1 while (e) { s2 s3 s4 }

by

s1 while (e) { s2 s4 }
s1 while (e) { s3 s4 }
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For example, if the current goal is
Type variables: <none>

Context : M.f

pre = 0 < n

(1--) x <− 0
(2--) y <− 0
(3--) i <− 0
(4--) j <− 0
(5--) while (i + j < n) {
(5.1) x <− x * i
(5.2) x <− x + (j + 1)
(5.3) y <− y * j
(5.4) y <− y + (i + 2)
(5.5) i <− i + 1
(5.6) j <− j + 2
(5--) }

post = 0 < x + y

then running
fission 5!2 @ 2, 4.

produces the goal
Type variables: <none>

Context : M.f

pre = 0 < n

(1--) x <− 0
(2--) y <− 0
(3--) i <− 0
(4--) j <− 0
(5--) while (i + j < n) {
(5.1) x <− x * i
(5.2) x <− x + (j + 1)
(5.3) i <− i + 1
(5.4) j <− j + 2
(5--) }
(6--) i <− 0
(7--) j <− 0
(8--) while (i + j < n) {
(8.1) y <− y * j
(8.2) y <− y + (i + 2)
(8.3) i <− i + 1
(8.4) j <− j + 2
(8--) }

post = 0 < x + y

Syntax: fission c @ m, n. Equivalent to fission c!1 @ m, n.

Syntax: fission{1} · · · | fission{2} · · ·. The pRHL versions of the above variants, working on
the designated program.
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fusion⊚

Syntax: fusion c!l @ m, n. HL statement judgement version. Fails unless 0 ≤ l and 0 ≤ m
and 0 ≤ n and the cth statement of the program is a while statement, and there are at least l
statements right before the while statement, at its level, and the part of the program beginning
from the l statements before the while loop may be uniquely matched against

s1 while (e) { s2 s4 }
s1 while (e) { s3 s4 }

where:

• s1 has length l;

• s2 has length m;

• s3 has length n;

• e doesn’t reference the variables written by s2 and s3;

• s1 and s4 don’t read or write the variables written by s2 and s3;

• s2 and s3 don’t write the variables written by s1 and s4;

• s2 and s3 don’t read or write the variables written by the other.

The tactic replaces
s1 while (e) { s2 s4 }
s1 while (e) { s3 s4 }

by
s1 while (e) { s2 s3 s4 }

For example, if the current goal is
Type variables: <none>

Context : M.f

pre = 0 < n

(1--) x <− 0
(2--) y <− 0
(3--) i <− 0
(4--) j <− 0
(5--) while (i + j < n) {
(5.1) x <− x * i
(5.2) x <− x + (j + 1)
(5.3) i <− i + 1
(5.4) j <− j + 2
(5--) }
(6--) i <− 0
(7--) j <− 0
(8--) while (i + j < n) {
(8.1) y <− y * j
(8.2) y <− y + (i + 2)
(8.3) i <− i + 1
(8.4) j <− j + 2
(8--) }

post = 0 < x + y
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then running

fusion 5!2 @ 2, 2.

produces the goal

Type variables: <none>

Context : M.f

pre = 0 < n

(1--) x <− 0
(2--) y <− 0
(3--) i <− 0
(4--) j <− 0
(5--) while (i + j < n) {
(5.1) x <− x * i
(5.2) x <− x + (j + 1)
(5.3) y <− y * j
(5.4) y <− y + (i + 2)
(5.5) i <− i + 1
(5.6) j <− j + 2
(5--) }

post = 0 < x + y

Syntax: fusion c @ m, n. Equivalent to fusion c!1 @ m, n.

Syntax: fusion{1} · · · | fusion{2} · · ·. The pRHL versions of the above variants, working on
the designated program.

alias⊚

Syntax: alias c with x. If the goal’s conclusion is an HL statement judgement whose program’s
cth statement is an assignment statement, and x is an identifier, then replace the assignment
statement by the following two statements:

• an assignment statement of the same kind as the original assignment statement (ordinary,
random, procedure call) whose left-hand side is x, and whose right-hand side is the right-
hand side of the original assignment statement;

• an ordinary assignment statement whose left-hand side is the left-hand side of the original
assignment statement, and whose right-hand side is x.

If x is a local variable of the program, a fresh name is generated by adding digits to the end of x.

Syntax: alias c. Equivalent to alias c with x.

Syntax: alias c x = e. If the program has an cth statement, and the expression e is well-typed
in the context of the program, insert before the cth statement an ordinary assignment statement
whose left-hand side is x and whose right-hand side is e. If x is a local variable of the program, a
fresh name is generated by adding digits to the end of x.

Syntax: alias{1} · · · | alias{2} · · ·. The pRHL versions of the preceding forms, where the
aliasing is done in the designated program.

For example, if the current goal is

Type variables: <none>
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Context : M.f

pre = true

(1) x <− 10
(2) (y, z) <− (x + 1, 6)

post = y + z = 17

then running

alias 2 with w.

produces the goal

Type variables: <none>

Context : M.f

pre = true

(1) x <− 10
(2) w <− (x + 1, 6)
(3) (y, z) <− w

post = y + z = 17

from which running

alias 3 u = w.`1 + 7.

produces the goal

Type variables: <none>

Context : M.f

pre = true

(1) x <− 10
(2) w <− (x + 1, 6)
(3) u <− w.`1 + 7
(4) (y, z) <− w

post = y + z = 17

from which running

alias 3.

produces the goal

Type variables: <none>

Context : M.f

pre = true

(1) x <− 10
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(2) w <− (x + 1, 6)
(3) x0 <− w.`1 + 7
(4) u <− x0
(5) (y, z) <− w

post = y + z = 17

cfold⊚

Syntax: cfold c ! m. Fails unless m ≥ 0. If the goal’s conclusion is an HL statement judgement
in which statement c of the judgement’s program is an ordinary assignment statement in which
constant values are assigned to local identifiers, and the following statement block of length m
does not write any of those identifiers, then replace all occurrences of the assigned identifiers in
that statement block by the constants assigned to them, and move the assignment statement to
after the modified statement block.

For example, if the current goal is

Type variables: <none>

Context : M.f

pre = true

(1) x <− 1
(2) y <− x + 1
(3) z <− y + x + 2
(4) w <− x - z

post = w = -4

then running

cfold 1 ! 1.

produces the goal

Type variables: <none>

Context : M.f

pre = true

(1) y <− 1 + 1
(2) x <− 1
(3) z <− y + x + 2
(4) w <− x - z

post = w = -4

from which running

cfold 2.

produces the goal

Type variables: <none>

Context : M.f
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pre = true

(1) y <− 1 + 1
(2) z <− y + 1 + 2
(3) w <− 1 - z
(4) x <− 1

post = w = -4

from which running

cfold 1.

produces the goal

Type variables: <none>

Context : M.f

pre = true

(1) z <− 1 + 1 + 1 + 2
(2) w <− 1 - z
(3) x <− 1
(4) y <− 1 + 1

post = w = -4

from which running

cfold 1.

produces the goal

Type variables: <none>

Context : M.f

pre = true

(1) w <− 1 - (1 + 1 + 1 + 2)
(2) x <− 1
(3) y <− 1 + 1
(4) z <− 1 + 1 + 1 + 2

post = w = -4

Syntax: cfold{1} c ! m | cfold{2} c ! m. Like the HL version, but operating on the designed
program of a pRHL judgement’s conclusion.

Syntax: cfold{1} c | cfold{2} c. Like the general cases, but where m is set so as to be the
number of statements after the assignment statement.

kill⊚

Syntax: kill c ! m. Fails unless m ≥ 0. If the goal’s conclusion is an HL statement judgement
whose program has a statement block starting at position c and having length m (when m = 0, this
block is empty), and the variables written by this statement block aren’t used in the judgement’s
postcondition or read by the rest of the program, then reduce the goal to two subgoals.
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• One whose conclusion is a pHL statement judgement whose pre- and postconditions are
true, whose program is the statement block, and whose bound part is = 1%r.

• One that’s identical to the original goal except that the statement block has been removed.

For example, if the current goal is

Type variables: <none>

Context : M.f

pre = M.y = 3

(1) M.y <− M.y + 1
(2) M.x <− 0
(3) M.x <− M.x + 1
(4) M.y <− M.y + 1

post = M.y = 5

then running

kill 2 ! 2.

produces the goals

Type variables: <none>

Context : M.f
Bound : [=] 1%r

pre = true

(1) M.x <− 0
(2) M.x <− M.x + 1

post = true

and

Type variables: <none>

Context : M.f

pre = M.y = 3

(1) M.y <− M.y + 1
(2) M.y <− M.y + 1

post = M.y = 5

Syntax: kill{1} c ! m | kill{2} c ! m. Like the HL case but for pRHL judgements, where
the statement block to be killed is in the designated program.

For example, if the current goal is

Type variables: <none>
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&1 (left ) : M.f [programs are in sync]
&2 (right) : M.f

pre = ={M.y} /\ M.y{1} = 3

(1) M.y <− M.y + 1
(2) M.x <− 0
(3) M.x <− M.x + 1
(4) M.y <− M.y + 1

post = ={M.y} /\ M.y{1} = 5

then running

kill{2} 2 ! 2.

produces the goals

Type variables: <none>

Context : M.f
Bound : [=] 1%r

pre = true

(1) M.x <− 0
(2) M.x <− M.x + 1

post = true

and

Type variables: <none>

&1 (left ) : M.f
&2 (right) : M.f

pre = ={M.y} /\ M.y{1} = 3

M.y <− M.y + 1 (1) M.y <− M.y + 1
M.x <− 0 (2) M.y <− M.y + 1
M.x <− M.x + 1 (3)
M.y <− M.y + 1 (4)

post = ={M.y} /\ M.y{1} = 5

Syntax: kill c | kill{1} c | kill{2} c. Like the general cases, but with m = 1.

Syntax: kill c ! * | kill{1} c ! * | kill{2} c ! *. Like the general cases, but with m set so
that the statement block to be killed is the rest of the current level of the (designated) program.

3.4.3 Tactics for Reasoning about Specifications
symmetry⊚

Syntax: symmetry. If the goal’s conclusion is a pRHL (statement) judgement, swap the two
programs, transforming the pre- and postconditions by swapping the memories they refer to.

For example, if the current goal is
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Type variables: <none>

pre = x{1} = y{2} /\ x{2} = - y{1}

M.f ~ N.g

post = 1 - res{1} = res{2}

then running

symmetry.

produces the goal

Type variables: <none>

pre = x{2} = y{1} /\ x{1} = - y{2}

N.g ~ M.f

post = 1 - res{2} = res{1}

And, if the current goal is

Type variables: <none>

&1 (left ) : M.f
&2 (right) : N.g

pre =
(x{1}, y{1}).`1 = (x{2}, y{2}).`2 /\
(x{2}, y{2}).`1 = - (x{1}, y{1}).`2

z <− x - y (1) z <− x + y

post = 1 - (z{1} + 1) = -z{2}

then running

symmetry.

produces the goal

Type variables: <none>

&1 (left ) : N.g
&2 (right) : M.f

pre =
(x{2}, y{2}).`1 = (x{1}, y{1}).`2 /\
(x{1}, y{1}).`1 = - (x{2}, y{2}).`2

z <− x + y (1) z <− x - y

post = 1 - (z{2} + 1) = -z{1}

.
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transitivity⊚

Syntax: transitivity N.r (P1 ==> Q1) (P2 ==> Q2). Reduces a goal whose conclusion is a
pRHL judgement (not statement judgement)

equiv[M1.p1 ~ M2.p2 : P ==> Q]

to goals whose conclusions are

• equiv[M1.p1 ~ N.r : P1 ==> Q1] and

• equiv[N.r ~ M2.p2 : P2 ==> Q2],

preceded by two auxiliary goals. The tactic fails if the Pi and Qi aren’t compatible with these
left and right programs. The conclusion of the first auxiliary goal checks that P implies the
conjunction of P1 and P2, where each corresponding pair of &2 memory references in P1 and &1
reference in P2 is existentially quantified. And the conclusion of the second auxilary goal checks
that the conjuction of Q1 and Q2 implies Q, where each corresponding pair of &2 references in
Q1 and &1 references in Q2 are universally quantified.

For example, consider the modules

module M = {
proc f(n : int, m : int) : int = {

var i, x : int;
i <− 0; x <− 0;
while (i < n) {

x <− x + m; i <− i + 1;
}
return x;

}
}.
module N = {

proc g(n : int, m : int) : int = {
var j, y : int;
j <− 0; y <− 0;
while (j < n) {

y <− y + m; j <− j + 1;
}
return y;

}
}.
module R = {

proc h(n : int, m : int) : int = {
return n * m;

}
}.

If the current goal is

Type variables: <none>

pre = 0 <= n{1} /\ 0 <= n{2} /\ n{1} * m{1} = n{2} * m{2}

M.f ~ N.g

post = ={res}

then running
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transitivity
R.h
(0 <= n{1} /\ (n * m){1} = (n * m){2} ==> ={res})
(0 <= n{2} /\ (n * m){1} = (n * m){2} ==> ={res}).

produces the four goals

Type variables: <none>

forall &1 &2,
0 <= n{1} /\ 0 <= n{2} /\ n{1} * m{1} = n{2} * m{2} =>
exists (arg : int * int),

(0 <= n{1} /\ n{1} * m{1} = arg.`1 * arg.`2) /\
0 <= n{2} /\ arg.`1 * arg.`2 = n{2} * m{2}

and

Type variables: <none>

forall &1 &m &2, res{1} = res{m} => res{m} = res{2} => ={res}

and

Type variables: <none>

pre = 0 <= n{1} /\ n{1} * m{1} = n{2} * m{2}

M.f ~ R.h

post = ={res}

and

Type variables: <none>

pre = 0 <= n{2} /\ n{1} * m{1} = n{2} * m{2}

R.h ~ N.g

post = ={res}

Syntax: transitivity{i} {s} (P1 ==> Q1) (P2 ==> Q2).
Reduces a goal whose conclusion is a pRHL statement judgement with precondition P , postcon-
dition Q, left program (statement sequence) s1 and right program s2 to goals whose conclusions
are pRHL statement judgements:

• equiv[s1 ~ s : P1 ==> Q1] and

• equiv[s ~ s2 : P2 ==> Q2],

preceded by two auxiliary goals. If the side i = 1, then the statement sequence s may only use
variables and unqualified procedures of the left program; when i = 2, it may only use variables and
unqualified procedures of the right program. The tactic fails if the Pi and Qi aren’t compatible
with these left and right programs. The conclusion of the first auxiliary goal checks that P
implies the conjunction of P1 and P2, where each corresponding pair of &2 memory references in
P1 and &1 reference in P2 is existentially quantified. And the conclusion of the second auxilary
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goal checks that the conjuction of Q1 and Q2 implies Q, where each corresponding pair of &2
references in Q1 and &1 references in Q2 are universally quantified.

Consider the modules M, N and R of the preceding case. If the current goal is

Type variables: <none>

&1 (left ) : M.f
&2 (right) : N.g

pre =
j{2} = 0 /\
y{2} = 0 /\
i{1} = 0 /\
x{1} = 0 /\ 0 <= n{1} /\ 0 <= n{2} /\ n{1} * m{1} = n{2} * m{2}

while (i < n) { (1--) while (j < n) {
x <− x + m (1.1) y <− y + m
i <− i + 1 (1.2) j <− j + 1

} (1--) }

post = x{1} = y{2}

then running

transitivity{1}
{x <− n * m;}
(0 <= n{1} /\ i{1} = 0 /\ x{1} = 0 /\ (n * m){1} = (n * m){2} ==>
={x})

(0 <= n{2} /\ j{2} = 0 /\ y{2} = 0 /\ (n * m){1} = (n * m){2} ==>
x{1} = y{2}).

produces the four goals

Type variables: <none>

forall &1 &2,
j{2} = 0 /\
y{2} = 0 /\
i{1} = 0 /\
x{1} = 0 /\ 0 <= n{1} /\ 0 <= n{2} /\ n{1} * m{1} = n{2} * m{2} =>
exists (m n : int),

(0 <= n{1} /\ i{1} = 0 /\ x{1} = 0 /\ n{1} * m{1} = n * m) /\
0 <= n{2} /\ j{2} = 0 /\ y{2} = 0 /\ n * m = n{2} * m{2}

and

Type variables: <none>

forall &1 &m &2, x{1} = x{m} => x{m} = y{2} => x{1} = y{2}

and

Type variables: <none>

&1 (left ) : M.f
&2 (right) : M.f

pre =
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0 <= n{1} /\ i{1} = 0 /\ x{1} = 0 /\ n{1} * m{1} = n{2} * m{2}

while (i < n) { (1--) x <− n * m
x <− x + m (1.1)
i <− i + 1 (1.2)

} (1--)

post = ={x}

and

Type variables: <none>

&1 (left ) : M.f
&2 (right) : N.g

pre =
0 <= n{2} /\ j{2} = 0 /\ y{2} = 0 /\ n{1} * m{1} = n{2} * m{2}

x <− n * m (1--) while (j < n) {
(1.1) y <− y + m
(1.2) j <− j + 1
(1--) }

post = x{1} = y{2}

And, if the current goal is

Type variables: <none>

&1 (left ) : M.f
&2 (right) : N.g

pre =
j{2} = 0 /\
y{2} = 0 /\
i{1} = 0 /\
x{1} = 0 /\ 0 <= n{1} /\ 0 <= n{2} /\ n{1} * m{1} = n{2} * m{2}

while (i < n) { (1--) while (j < n) {
x <− x + m (1.1) y <− y + m
i <− i + 1 (1.2) j <− j + 1

} (1--) }

post = x{1} = y{2}

then running

transitivity{2}
{y <− n * m;}
(0 <= n{1} /\ i{1} = 0 /\ x{1} = 0 /\ (n * m){1} = (n * m){2} ==>
x{1} = y{2})

(0 <= n{2} /\ j{2} = 0 /\ y{2} = 0 /\ (n * m){1} = (n * m){2} ==>
={y}).

produces the four goals

Type variables: <none>
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forall &1 &2,
j{2} = 0 /\
y{2} = 0 /\
i{1} = 0 /\
x{1} = 0 /\ 0 <= n{1} /\ 0 <= n{2} /\ n{1} * m{1} = n{2} * m{2} =>
exists (m n : int),

(0 <= n{1} /\ i{1} = 0 /\ x{1} = 0 /\ n{1} * m{1} = n * m) /\
0 <= n{2} /\ j{2} = 0 /\ y{2} = 0 /\ n * m = n{2} * m{2}

and

Type variables: <none>

forall &1 &m &2, x{1} = y{m} => y{m} = y{2} => x{1} = y{2}

and

Type variables: <none>

&1 (left ) : M.f
&2 (right) : N.g

pre =
0 <= n{1} /\ i{1} = 0 /\ x{1} = 0 /\ n{1} * m{1} = n{2} * m{2}

while (i < n) { (1--) y <− n * m
x <− x + m (1.1)
i <− i + 1 (1.2)

} (1--)

post = x{1} = y{2}

and

Type variables: <none>

&1 (left ) : N.g
&2 (right) : N.g

pre =
0 <= n{2} /\ j{2} = 0 /\ y{2} = 0 /\ n{1} * m{1} = n{2} * m{2}

y <− n * m (1--) while (j < n) {
(1.1) y <− y + m
(1.2) j <− j + 1
(1--) }

post = ={y}

conseq⊚

Syntax: conseq (_ : P ==> Q).
If the goal’s conclusion is a pRHL or HL judgement or statement judgement, weaken the
conclusion’s precondition to P , and strengthen its postcondition to Q, generating initial auxilary
subgoals checking that this reduction is sound. Fails if P and Q aren’t compatible with the
judgement type. The conclusion of the first auxiliary subgoal checks that the precondition P ′ of
the original goal’s conclusion implies P . The conclusion of the second auxiliary subgoal checks
that Q implies the postcondition Q′ of the original goal’s conclusion, except that any memory
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references to variables that may be modified by the conclusion’s program(s) are universally
quantified in Q and Q′, and P is also included as an assumption.
P or Q may be replaced by _, in which case the pre- or postcondition is left unchanged. When a
pre- or postcondition is unchanged, the corresponding auxilary subgoal isn’t generated (as its
proof would be trivial). When the goal’s conclusion is a judgement (not a statement judgement), a
proof term whose conclusion is a judgement on the procedure(s) of the original goals’s conclusion
may be supplied as the argument to conseq, in which case P and Q are taken to be the pre- and
postconditions of this judgement, and only the auxilary subgoals are generated.

For example, if the current goal is

Type variables: <none>

&1 (left ) : M.f
&2 (right) : N.f

pre =
={z} /\
M.x{1} = N.x{2} /\
M.y{1} = N.y{2} /\ z{1} < M.x{1} /\ z{1} < M.y{1}

if (z <= M.x \/ z <= M.y) { (1--) if (z <= N.x) {
M.x <− M.x + 1 (1.1) N.x <− N.x - 1

} (1--) }

post = M.y{1} = N.y{2} /\ `|M.x{1} - N.x{2}| <= 2

then running

conseq (_ :
={z} /\ M.x{1} = N.x{2} /\ M.y{1} = N.y{2} /\
z{1} <= M.x{1} /\ z{1} <= M.y{1} ==> _).

produces the goals

Type variables: <none>

forall &1 &2,
={z} /\
M.x{1} = N.x{2} /\
M.y{1} = N.y{2} /\ z{1} < M.x{1} /\ z{1} < M.y{1} =>
={z} /\
M.x{1} = N.x{2} /\
M.y{1} = N.y{2} /\ z{1} <= M.x{1} /\ z{1} <= M.y{1}

and

Type variables: <none>

&1 (left ) : M.f
&2 (right) : N.f

pre =
={z} /\
M.x{1} = N.x{2} /\
M.y{1} = N.y{2} /\ z{1} <= M.x{1} /\ z{1} <= M.y{1}

if (z <= M.x \/ z <= M.y) { (1--) if (z <= N.x) {
M.x <− M.x + 1 (1.1) N.x <− N.x - 1
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} (1--) }

post = M.y{1} = N.y{2} /\ `|M.x{1} - N.x{2}| <= 2

Continuing from the last of these goals, running

conseq (_ : _ ==> `|M.x{1} - N.x{2}| <= 2).

produces the goals

Type variables: <none>

forall &1 &2,
={z} /\
M.x{1} = N.x{2} /\ M.y{1} = N.y{2} /\ z{1} <= M.x{1} /\ z{1} <= M.y{1} =>
forall (x_L x_R : int),

`|x_L - x_R| <= 2 => M.y{1} = N.y{2} /\ `|x_L - x_R| <= 2

and

Type variables: <none>

&1 (left ) : M.f
&2 (right) : N.f

pre =
={z} /\
M.x{1} = N.x{2} /\ M.y{1} = N.y{2} /\ z{1} <= M.x{1} /\ z{1} <= M.y{1}

if (z <= M.x \/ z <= M.y) { (1--) if (z <= N.x) {
M.x <− M.x + 1 (1.1) N.x <− N.x - 1

} (1--) }

post = `|M.x{1} - N.x{2}| <= 2

Continuing from the last of these goals, running

conseq (_ :
={z} /\ M.x{1} = N.x{2} /\ z{1} <= N.x{2} ==>
M.x{1} = N.x{2} \/ M.x{1} = N.x{2} + 2).

produces the goals

Type variables: <none>

forall &1 &2,
={z} /\
M.x{1} = N.x{2} /\
M.y{1} = N.y{2} /\ z{1} <= M.x{1} /\ z{1} <= M.y{1} =>
={z} /\ M.x{1} = N.x{2} /\ z{1} <= N.x{2}

and

Type variables: <none>

forall &1 &2,
={z} /\
M.x{1} = N.x{2} /\
M.y{1} = N.y{2} /\ z{1} <= M.x{1} /\ z{1} <= M.y{1} =>
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forall (x_L x_R : int),
x_L = x_R \/ x_L = x_R + 2 => `|x_L - x_R| <= 2

and

Type variables: <none>

&1 (left ) : M.f
&2 (right) : N.f

pre = ={z} /\ M.x{1} = N.x{2} /\ z{1} <= N.x{2}

if (z <= M.x \/ z <= M.y) { (1--) if (z <= N.x) {
M.x <− M.x + 1 (1.1) N.x <− N.x - 1

} (1--) }

post = M.x{1} = N.x{2} \/ M.x{1} = N.x{2} + 2

If the current goal is

Type variables: <none>

pre =
={z} /\
M.x{1} = N.x{2} /\
M.y{1} = N.y{2} /\ z{1} < M.x{1} /\ z{1} < M.y{1}

M.f ~ N.f

post = M.y{1} = N.y{2} /\ `|M.x{1} - N.x{2}| <= 2

then running

conseq (_ :
={z} /\ M.x{1} = N.x{2} /\ M.y{1} = N.y{2} /\
z{1} <= M.x{1} /\ z{1} <= M.y{1} ==> _).

produces the goals

Type variables: <none>

forall &1 &2,
={z} /\
M.x{1} = N.x{2} /\
M.y{1} = N.y{2} /\ z{1} < M.x{1} /\ z{1} < M.y{1} =>
={z} /\
M.x{1} = N.x{2} /\
M.y{1} = N.y{2} /\ z{1} <= M.x{1} /\ z{1} <= M.y{1}

and

Type variables: <none>

pre =
={z} /\
M.x{1} = N.x{2} /\
M.y{1} = N.y{2} /\ z{1} <= M.x{1} /\ z{1} <= M.y{1}
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M.f ~ N.f

post = M.y{1} = N.y{2} /\ `|M.x{1} - N.x{2}| <= 2

Continuing from the last of these goals, running

conseq (_ : _ ==> `|M.x{1} - N.x{2}| <= 2).

produces the goals

Type variables: <none>

forall &1 &2,
={z} /\
M.x{1} = N.x{2} /\ M.y{1} = N.y{2} /\ z{1} <= M.x{1} /\ z{1} <= M.y{1} =>
forall (x_L x_R : int),

`|x_L - x_R| <= 2 => M.y{1} = N.y{2} /\ `|x_L - x_R| <= 2

and

Type variables: <none>

pre =
={z} /\
M.x{1} = N.x{2} /\ M.y{1} = N.y{2} /\ z{1} <= M.x{1} /\ z{1} <= M.y{1}

M.f ~ N.f

post = `|M.x{1} - N.x{2}| <= 2

Continuing from the last of these goals, running

conseq (_ :
={z} /\ M.x{1} = N.x{2} /\ z{1} <= N.x{2} ==>
M.x{1} = N.x{2} \/ M.x{1} = N.x{2} + 2).

produces the goals

Type variables: <none>

forall &1 &2,
={z} /\
M.x{1} = N.x{2} /\
M.y{1} = N.y{2} /\ z{1} <= M.x{1} /\ z{1} <= M.y{1} =>
={z} /\ M.x{1} = N.x{2} /\ z{1} <= N.x{2}

and

Type variables: <none>

forall &1 &2,
={z} /\
M.x{1} = N.x{2} /\
M.y{1} = N.y{2} /\ z{1} <= M.x{1} /\ z{1} <= M.y{1} =>
forall (x_L x_R : int),

x_L = x_R \/ x_L = x_R + 2 => `|x_L - x_R| <= 2

and
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Type variables: <none>

pre = ={z} /\ M.x{1} = N.x{2} /\ z{1} <= N.x{2}

M.f ~ N.f

post = M.x{1} = N.x{2} \/ M.x{1} = N.x{2} + 2

Given lemma

lemma M_N_3 :
equiv[M.f ~ N.f :

={z} /\ M.x{1} = N.x{2} /\ z{1} <= N.x{2} ==>
M.x{1} = N.x{2} \/ M.x{1} = N.x{2} + 2].

if the current goal is

Type variables: <none>

pre =
={z} /\
M.x{1} = N.x{2} /\
M.y{1} = N.y{2} /\ z{1} < M.x{1} /\ z{1} < M.y{1}

M.f ~ N.f

post = M.y{1} = N.y{2} /\ `|M.x{1} - N.x{2}| <= 2

then running

conseq M_N_3.

produces the goals

Type variables: <none>

forall &1 &2,
={z} /\
M.x{1} = N.x{2} /\
M.y{1} = N.y{2} /\ z{1} < M.x{1} /\ z{1} < M.y{1} =>
={z} /\ M.x{1} = N.x{2} /\ z{1} <= N.x{2}

and

Type variables: <none>

forall &1 &2,
={z} /\
M.x{1} = N.x{2} /\
M.y{1} = N.y{2} /\ z{1} < M.x{1} /\ z{1} < M.y{1} =>
forall (x_L x_R : int),

x_L = x_R \/ x_L = x_R + 2 =>
M.y{1} = N.y{2} /\ `|x_L - x_R| <= 2

If the current goal is

Type variables: <none>
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x': int

Context : M.f

pre = x' = M.x /\ z < M.x /\ z < M.y

(1--) if (z <= M.x \/ z <= M.y) {
(1.1) M.x <− M.x + 1
(1--) }

post = x' < M.x

then running

conseq (_ : x' = M.x /\ z <= M.y ==> x' = M.x - 1).

produces the goals

Type variables: <none>

x': int

forall &hr,
x' = M.x{hr} /\ z{hr} < M.x{hr} /\ z{hr} < M.y{hr} =>
x' = M.x{hr} /\ z{hr} <= M.y{hr}

and

Type variables: <none>

x': int

forall &hr,
x' = M.x{hr} /\ z{hr} < M.x{hr} /\ z{hr} < M.y{hr} =>
forall (x : int), x' = x - 1 => x' < x

and

Type variables: <none>

x': int

Context : M.f

pre = x' = M.x /\ z <= M.y

(1--) if (z <= M.x \/ z <= M.y) {
(1.1) M.x <− M.x + 1
(1--) }

post = x' = M.x - 1

If the current goal is

Type variables: <none>

x': int

pre = x' = M.x /\ z < M.x /\ z < M.y

M.f

post = x' < M.x
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then running

conseq (_ : x' = M.x /\ z <= M.y ==> x' = M.x - 1).

produces the goals

Type variables: <none>

x': int

forall &hr,
x' = M.x{hr} /\ z{hr} < M.x{hr} /\ z{hr} < M.y{hr} =>
x' = M.x{hr} /\ z{hr} <= M.y{hr}

and

Type variables: <none>

x': int

forall &hr,
x' = M.x{hr} /\ z{hr} < M.x{hr} /\ z{hr} < M.y{hr} =>
forall (x : int), x' = x - 1 => x' < x

and

Type variables: <none>

x': int

pre = x' = M.x /\ z <= M.y

M.f

post = x' = M.x - 1

Given lemma

lemma M_3 (x' : int) :
hoare[M.f : x' = M.x /\ z <= M.y ==> x' = M.x - 1].

if the current goal is

Type variables: <none>

x': int

pre = x' = M.x /\ z < M.x /\ z < M.y

M.f

post = x' < M.x

then running

conseq (M_3 x').

produces the goals

Type variables: <none>

x': int

forall &hr,
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x' = M.x{hr} /\ z{hr} < M.x{hr} /\ z{hr} < M.y{hr} =>
x' = M.x{hr} /\ z{hr} <= M.y{hr}

and
Type variables: <none>

x': int

forall &hr,
x' = M.x{hr} /\ z{hr} < M.x{hr} /\ z{hr} < M.y{hr} =>
forall (x : int), x' = x - 1 => x' < x

Syntax: conseq (_ : P ==> Q) (_ : P1 ==> Q1) (_ : P2 ==> Q2).
This form only applies to pRHL judgements and statement judgements, reducing the goal’s
conclusion to

• an HL (statement) judgement for the left program with precondition P1 and postcondition
Q1;

• an HL (statement) judgement for the right program with precondition P2 and postcondition
Q2; and

• a pRHL (statement) judgement whose precondition is P , postcondition is Q, and programs
are as in the original judgement;

As before, auxiliary goals are generated whose conclusions check the validity of the reduction:
that the original conclusion’s precondition P ′ implies the conjunction of P , P1 and P2; and that
the conjunction of Q, Q1 and Q2 implies the original conclusion’s postcondition Q′. One of the
HL specifications may be replaced by _, which is equivalent to conseq (_ : true ==> true). And
in the case of a pRHL judgement (not a statement judgement), proof terms may be used as the
arguments to conseq.
For example, if the current goal is

Type variables: <none>

&1 (left ) : M.f
&2 (right) : N.f

pre = ={b} /\ M.x{1} %% 2 + N.y{2} %% 2 = 0

M.x <− M.x + 2 (1) N.y <− N.y - 2
b' <$ {0,1} (2) b' <$ {0,1}
b <− b /\ b' (3) b <− b /\ b'

post = ={b} /\ M.x{1} %% 2 + N.y{2} %% 2 = 0

then running
conseq (_ : ={b} ==> ={b})

(_ : M.x %% 2 = 0 ==> M.x %% 2 = 0)
(_ : N.y %% 2 = 0 ==> N.y %% 2 = 0).

produces the goals
Type variables: <none>

forall &1 &2,
={b} /\ M.x{1} %% 2 + N.y{2} %% 2 = 0 =>
={b} /\ M.x{1} %% 2 = 0 /\ N.y{2} %% 2 = 0



CHAPTER 3. TACTICS 145

and

Type variables: <none>

forall &1 &2,
={b} /\ M.x{1} %% 2 + N.y{2} %% 2 = 0 =>
forall (x_L : int) (b_L : bool) (y_R : int) (b_R : bool),

b_L = b_R /\ x_L %% 2 = 0 /\ y_R %% 2 = 0 =>
b_L = b_R /\ x_L %% 2 + y_R %% 2 = 0

and

Type variables: <none>

Context : M.f

pre = M.x %% 2 = 0

(1) M.x <− M.x + 2
(2) b' <$ {0,1}
(3) b <− b /\ b'

post = M.x %% 2 = 0

and

Type variables: <none>

Context : N.f

pre = N.y %% 2 = 0

(1) N.y <− N.y - 2
(2) b' <$ {0,1}
(3) b <− b /\ b'

post = N.y %% 2 = 0

and

Type variables: <none>

&1 (left ) : M.f
&2 (right) : N.f

pre = ={b}

M.x <− M.x + 2 (1) N.y <− N.y - 2
b' <$ {0,1} (2) b' <$ {0,1}
b <− b /\ b' (3) b <− b /\ b'

post = ={b}

If the current goal is

Type variables: <none>
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pre = ={b} /\ M.x{1} %% 2 + N.y{2} %% 2 = 0

M.f ~ N.f

post = ={res} /\ M.x{1} %% 2 + N.y{2} %% 2 = 0

then running
conseq (_ : ={b} ==> ={res})

(_ : M.x %% 2 = 0 ==> M.x %% 2 = 0)
(_ : N.y %% 2 = 0 ==> N.y %% 2 = 0).

produces the goals
Type variables: <none>

forall &1 &2,
={b} /\ M.x{1} %% 2 + N.y{2} %% 2 = 0 =>
={b} /\ M.x{1} %% 2 = 0 /\ N.y{2} %% 2 = 0

and
Type variables: <none>

forall &1 &2,
={b} /\ M.x{1} %% 2 + N.y{2} %% 2 = 0 =>
forall (result_L result_R : bool) (x_L y_R : int),

result_L = result_R /\ x_L %% 2 = 0 /\ y_R %% 2 = 0 =>
result_L = result_R /\ x_L %% 2 + y_R %% 2 = 0

and
Type variables: <none>

pre = M.x %% 2 = 0

M.f

post = M.x %% 2 = 0

and
Type variables: <none>

pre = N.y %% 2 = 0

N.f

post = N.y %% 2 = 0

and
Type variables: <none>

pre = ={b}

M.f ~ N.f

post = ={res}
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And given lemmas

lemma M_N : equiv[M.f ~ N.f : ={b} ==> ={res}].

and

lemma M : hoare[M.f : M.x %% 2 = 0 ==> M.x %% 2 = 0].

and

lemma N : hoare[N.f : N.y %% 2 = 0 ==> N.y %% 2 = 0].

if the current goal is

Type variables: <none>

pre = ={b} /\ M.x{1} %% 2 + N.y{2} %% 2 = 0

M.f ~ N.f

post = ={res} /\ M.x{1} %% 2 + N.y{2} %% 2 = 0

then running

conseq M_N M N.

produces the goals

Type variables: <none>

forall &1 &2,
={b} /\ M.x{1} %% 2 + N.y{2} %% 2 = 0 =>
={b} /\ M.x{1} %% 2 = 0 /\ N.y{2} %% 2 = 0

and

Type variables: <none>

forall &1 &2,
={b} /\ M.x{1} %% 2 + N.y{2} %% 2 = 0 =>
forall (result_L result_R : bool) (x_L y_R : int),

result_L = result_R /\ x_L %% 2 = 0 /\ y_R %% 2 = 0 =>
result_L = result_R /\ x_L %% 2 + y_R %% 2 = 0

case⊚

Syntax: case e. If the goal’s conclusion is a pRHL, HL or pHL statement judgement and e is
well-typed in the goal’s context, split the goal into two goals:

• a first goal in which e is added as a conjunct to the conclusion’s precondition; and

• a second goal in which !e is added as a conjunct to the conclusion’s precondition.

For example, if the current goal is

Type variables: <none>

&1 (left ) : M.f
&2 (right) : N.f
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pre = ={x, y}

if (x < y) { (1--) if (y <= x) {
z <− y - x (1.1) z <− x - y

} else { (1--) } else {
z <− x - y (1?1) z <− y - x

} (1--) }

post = ={z}

then running

case (x{1} < y{1}).

produces the goals

Type variables: <none>

&1 (left ) : M.f
&2 (right) : N.f

pre = ={x, y} /\ x{1} < y{1}

if (x < y) { (1--) if (y <= x) {
z <− y - x (1.1) z <− x - y

} else { (1--) } else {
z <− x - y (1?1) z <− y - x

} (1--) }

post = ={z}

and

Type variables: <none>

&1 (left ) : M.f
&2 (right) : N.f

pre = ={x, y} /\ ! x{1} < y{1}

if (x < y) { (1--) if (y <= x) {
z <− y - x (1.1) z <− x - y

} else { (1--) } else {
z <− x - y (1?1) z <− y - x

} (1--) }

post = ={z}

And if the current goal is

Type variables: <none>

Context : M.f

pre = true

(1--) y <− -1
(2--) while (0 < x) {
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(2.1) y <− y + 2
(2.2) x <− x - 1
(2--) }

post = y <> 0

then running

case (0 < x).

produces the goals

Type variables: <none>

Context : M.f

pre = 0 < x

(1--) y <− -1
(2--) while (0 < x) {
(2.1) y <− y + 2
(2.2) x <− x - 1
(2--) }

post = y <> 0

and

Type variables: <none>

Context : M.f

pre = ! 0 < x

(1--) y <− -1
(2--) while (0 < x) {
(2.1) y <− y + 2
(2.2) x <− x - 1
(2--) }

post = y <> 0

byequiv⊚

Syntax: byequiv (_ : P ==> Q). If the goal’s conclusion has the form

Pr[M1.p1(a1,1,. . .,a1,n1 ) @ &m1 : E1] = Pr[M2.p2(a2,1,. . .,a2,n2 ) @ &m2 : E2],

reduce the goal to three subgoals:

• One with conclusion equiv[M1.p1 ~ M2.p2 : P ==> Q];

• One whose conclusion says that P holds, where references to memories &1 and &2 have been
replaced by &m1 and &m2, respectively, and references to the formal parameters of M1.p1

and M2.p2 have been replaced by their arguments;

• One whose conclusion says that Q implies that E1{1} <=> E2{2}.

The argument to byequiv may be replaced by a proof term for equiv[M1.p1 ~ M2.p2 : P ==> Q],
in which case the first subgoal isn’t generated. Furthermore, either or both of P and Q may
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be replaced by _, asking that the pre- or postcondition be inferred. Supplying no argument to
byequiv is the same as replacing both P and Q by _. By default, inference of Q attempts to infer
a conjuction of equalities implying E1{1} <=> E2{2}. Passing the [-eq] option to byequiv takes
Q to be E1{1} <=> E2{2}.

The other variants of the tactic behave similarly with regards to the use of proof terms and
specification inference.

For example, consider the module

module M = {
var x : int
proc f(y : int) : int = {

var z : int;
z <$ [x .. y];
return z;

}
}.

If the current goal is

Type variables: <none>

y1: int
y2: int
&m1: memory
&m2: memory
x_eq: M.x{m1} = M.x{m2}
y_eq: y1 = y2

Pr[M.f(y1) @ &m1 : res = 0] = Pr[M.f(y2) @ &m2 : res = 0]

then running

byequiv (_ : ={M.x, y} ==> ={res}).

produces the goals

Type variables: <none>

y1: int
y2: int
&m1: memory
&m2: memory
x_eq: M.x{m1} = M.x{m2}
y_eq: y1 = y2

pre = ={M.x, y}

M.f ~ M.f

post = ={res}

and

Type variables: <none>

y1: int
y2: int
&m1: memory
&m2: memory
x_eq: M.x{m1} = M.x{m2}
y_eq: y1 = y2
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M.x{m1} = M.x{m2} /\ y1 = y2

and

Type variables: <none>

y1: int
y2: int
&m1: memory
&m2: memory
x_eq: M.x{m1} = M.x{m2}
y_eq: y1 = y2

forall &1 &2, ={res} => res{1} = 0 <=> res{2} = 0

Given the lemma

lemma M_M_f : equiv[M.f ~ M.f : ={M.x, y} ==> ={res}].

if the current goal is

Type variables: <none>

y1: int
y2: int
&m1: memory
&m2: memory
x_eq: M.x{m1} = M.x{m2}
y_eq: y1 = y2

Pr[M.f(y1) @ &m1 : res = 0] = Pr[M.f(y2) @ &m2 : res = 0]

then running

byequiv M_M_f.

produces the goals

Type variables: <none>

y1: int
y2: int
&m1: memory
&m2: memory
x_eq: M.x{m1} = M.x{m2}
y_eq: y1 = y2

M.x{m1} = M.x{m2} /\ y1 = y2

and

Type variables: <none>

y1: int
y2: int
&m1: memory
&m2: memory
x_eq: M.x{m1} = M.x{m2}
y_eq: y1 = y2

forall &1 &2, ={res} => res{1} = 0 <=> res{2} = 0
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And, if the current goal is

Type variables: <none>

y1: int
y2: int
&m1: memory
&m2: memory
x_eq: M.x{m1} = M.x{m2}
y_eq: y1 = y2

Pr[M.f(y1) @ &m1 : res = 0] = Pr[M.f(y2) @ &m2 : res = 0]

then running

byequiv.

produces the goals

Type variables: <none>

y1: int
y2: int
&m1: memory
&m2: memory
x_eq: M.x{m1} = M.x{m2}
y_eq: y1 = y2

pre = y{2} = y2 /\ M.x{2} = M.x{m2} /\ y{1} = y1 /\ M.x{1} = M.x{m1}

M.f ~ M.f

post = ={res}

and

Type variables: <none>

y1: int
y2: int
&m1: memory
&m2: memory
x_eq: M.x{m1} = M.x{m2}
y_eq: y1 = y2

y2 = y2 /\ M.x{m2} = M.x{m2} /\ y1 = y1 /\ M.x{m1} = M.x{m1}

and

Type variables: <none>

y1: int
y2: int
&m1: memory
&m2: memory
x_eq: M.x{m1} = M.x{m2}
y_eq: y1 = y2

forall &1 &2, ={res} => res{1} = 0 <=> res{2} = 0

Syntax: byequiv (_ : P ==> Q). If the goal’s conclusion has the form

Pr[M1.p1(a1,1,. . .,a1,n1 ) @ &m1 : E1] <= Pr[M2.p2(a2,1,. . .,a2,n2 ) @ &m2 : E2],
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then byequiv behaves the same as in the first variant except that the conclusion of the third
subgoal says that Q implies E1{1} => E2{2}.
For example, if the current goal is

Type variables: <none>

&m: memory

Pr[M.f() @ &m : res] <= Pr[N.f() @ &m : res]

then running
byequiv (_ : true ==> res{1} => res{2}).

produces the goals
Type variables: <none>

&m: memory

pre = true

M.f ~ N.f

post = res{1} => res{2}

and
Type variables: <none>

&m: memory

true

and
Type variables: <none>

&m: memory

forall &1 &2, (res{1} => res{2}) => res{1} => res{2}

And, if the current goal is
Type variables: <none>

&m: memory

Pr[M.f() @ &m : res] <= Pr[N.f() @ &m : res]

then running
byequiv.

produces the goals
Type variables: <none>

&m: memory

pre = true

M.f ~ N.f

post = res{1} => res{2}
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and

Type variables: <none>

&m: memory

true

and

Type variables: <none>

&m: memory

forall &1 &2, (res{1} => res{2}) => res{1} => res{2}

Syntax: byequiv (_ : P ==> Q). If the goal’s conclusion has the form

Pr[M1.p1(a1,1,. . .,a1,n1 ) @ &m1 : E1] <=
Pr[M2.p2(a2,1,. . .,a2,n2 ) @ &m2 : E2] + Pr[M2.p2(a2,1,. . .,a2,n2 ) @ &m2 : B2],

then byequiv behaves the same as in the first variant except that the conclusion of the third
subgoal says that Q implies !B2{2} => E1{1} => E2{2}.

For example, if the current goal is

Type variables: <none>

&m: memory

Pr[M.f() @ &m : res] <= Pr[N.f() @ &m : res] + Pr[N.f() @ &m : N.bad]

then running

byequiv (_ : true ==> ! N.bad{2} => res{1} => res{2}).

produces the goals

Type variables: <none>

&m: memory

pre = true

M.f ~ N.f

post = !N.bad{2} => res{1} => res{2}

and

Type variables: <none>

&m: memory

true

FiXme Fatal: Why is the second subgoal pruned? (Compare with first and second
variants, where the corresponding subgoal isn’t pruned.) And, if the current goal is

Type variables: <none>

&m: memory

Pr[M.f() @ &m : res] <= Pr[N.f() @ &m : res] + Pr[N.f() @ &m : N.bad]
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then running

byequiv.

produces the goals

Type variables: <none>

&m: memory

pre = true

M.f ~ N.f

post = !N.bad{2} => res{1} => res{2}

and

Type variables: <none>

&m: memory

true

FiXme Fatal: Why is the second subgoal pruned?

Syntax: byequiv (_ : P ==> Q) : B1. If the goal’s conclusion has the form

`| Pr[M1.p1(a1,1,. . .,a1,n1 ) @ &m1 : E1] - Pr[M2.p2(a2,1,. . .,a2,n2 ) @ &m2 : E2] | <=
Pr[M2.p2(a2,1,. . .,a2,n2 ) @ &m2 : B2],

then byequiv behaves the same as in the first variant except that the conclusion of the third
subgoal says that Q implies

(B1{1} <=> B2{2}) /\ ! B2{2} => ( E1{1} <=> E2{2})

For example, if the current goal is

Type variables: <none>

&m: memory

`|Pr[M.f() @ &m : res] - Pr[N.f() @ &m : res]| <= Pr[N.f() @ &m : N.bad]

then running

byequiv (_ : true ==> M.bad{1} = N.bad{2} /\ (! N.bad{2} => ={res})) : M.bad.

produces the goals

Type variables: <none>

&m: memory

pre = true

M.f ~ N.f

post = M.bad{1} = N.bad{2} /\ (!N.bad{2} => ={res})

and
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Type variables: <none>

&m: memory

true

and

Type variables: <none>

&m: memory

forall &1 &2,
M.bad{1} = N.bad{2} /\ (!N.bad{2} => ={res}) =>
(M.bad{1} <=> N.bad{2}) /\ (!N.bad{2} => res{1} <=> res{2})

Given the lemma

lemma L2 &m :

if the current goal is

Type variables: <none>

&m: memory

`|Pr[M.f() @ &m : res] - Pr[N.f() @ &m : res]| <= Pr[N.f() @ &m : N.bad]

then running

byequiv M_N_f : M.bad.

produces the goals

Type variables: <none>

&m: memory

true

and

Type variables: <none>

&m: memory

forall &1 &2,
M.bad{1} = N.bad{2} /\ (!N.bad{2} => ={res}) =>
(M.bad{1} <=> N.bad{2}) /\ (!N.bad{2} => res{1} <=> res{2})

byphoare⊚

Syntax: byphoare (_ : P ==> Q). If the goal’s conclusion has the form

Pr[M.p(a1,. . .,an) @ &m : E] = e,

reduce the goal to three subgoals:

• One with conclusion phoare[M.p : P ==> Q] = e;

• One whose conclusion says that P holds, where variables references are looked-up in &m
and references to the formal parameters of M.p have been replaced by its arguments; and
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• One whose conclusion says that Q <=> E.

The argument to byphoare may be replaced by a proof term for phoare[M.p : P ==> Q] = e, in
which case the first subgoal isn’t generated. Furthermore, either or both of P and Q may be
replaced by _, asking that the pre- or postcondition be inferred. Supplying no argument to
byphoare is the same as replacing both P and Q by _.
The other variants of the tactic behave similarly with regards to the use of proof terms and
specification inference.
For example, consider the module

module M = {
var x : int
proc f(y : int) : int = {

var z : int;
x <$ [x .. y];
return x;

}

If the current goal is
Type variables: <none>

x': int
y': int
&m: memory
range: x' + 1 = y'
x_eq: M.x{m} = x'

Pr[M.f(y') @ &m : res = x'] = 1%r / 2%r

then running
byphoare (_ : M.x + 1 = y /\ x' = M.x ==> x' = res).

produces the goals
Type variables: <none>

x': int
y': int
&m: memory
range: x' + 1 = y'
x_eq: M.x{m} = x'

pre = M.x + 1 = y /\ x' = M.x

M.f
[=] 1%r / 2%r

post = x' = res

and
Type variables: <none>

x': int
y': int
&m: memory
range: x' + 1 = y'
x_eq: M.x{m} = x'

M.x{m} + 1 = y' /\ x' = M.x{m}
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and
Type variables: <none>

x': int
y': int
&m: memory
range: x' + 1 = y'
x_eq: M.x{m} = x'

forall &hr, x' = res{hr} <=> res{hr} = x'

Given the lemma
lemma M_f (x' : int) :

phoare[M.f : M.x + 1 = y /\ x' = M.x ==> x' = res] = (1%r / 2%r).

if the current goal is
Type variables: <none>

x': int
y': int
&m: memory
range: x' + 1 = y'
x_eq: M.x{m} = x'

Pr[M.f(y') @ &m : res = x'] = 1%r / 2%r

then running
byphoare (M_f x').

produces the goals
Type variables: <none>

x': int
y': int
&m: memory
range: x' + 1 = y'
x_eq: M.x{m} = x'

M.x{m} + 1 = y' /\ x' = M.x{m}

and
Type variables: <none>

x': int
y': int
&m: memory
range: x' + 1 = y'
x_eq: M.x{m} = x'

forall &hr, x' = res{hr} <=> res{hr} = x'

Syntax: byphoare (_ : P ==> Q). If the goal’s conclusion has the form

e <= Pr[M.p(a1,. . .,an) @ &m : E],

then byphoare behaves as in the first variant except the conclusion of the first subgoal is
phoare[M.p : P ==> Q] >= e.
For example, if the current goal is
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Type variables: <none>

&m: memory

1%r / 2%r <= Pr[M.f() @ &m : res]

then running

byphoare (_ : true ==> res).

produces the goals

Type variables: <none>

&m: memory

pre = true

M.f
[>=] 1%r / 2%r

post = res

and

Type variables: <none>

&m: memory

true

and

Type variables: <none>

&m: memory

forall _, true

FiXme Fatal: It’s confusing how the third goal has been simplified, but not pruned.
Given the lemma

lemma M_f : phoare[M.f : true ==> res] >= (1%r / 2%r).

if the current goal is

Type variables: <none>

&m: memory

1%r / 2%r <= Pr[M.f() @ &m : res]

then running

byphoare M_f.

produces the goals

Type variables: <none>

&m: memory

true
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and

Type variables: <none>

&m: memory

forall _, true

And, if the current goal is

Type variables: <none>

&m: memory

1%r / 2%r <= Pr[M.f() @ &m : res]

then running

byphoare.

produces the goals

Type variables: <none>

&m: memory

pre = true

M.f
[>=] 1%r / 2%r

post = res

and

Type variables: <none>

&m: memory

true

and

Type variables: <none>

&m: memory

forall _, true

Syntax: byphoare (_ : P ==> Q). If the goal’s conclusion has the form

Pr[M.p(a1,. . .,an) @ &m : E] <= e,

then byphoare behaves as in the first variant except the conclusion of the first subgoal is
phoare[M.p : P ==> Q] <= e.

For example, if the current goal is

Type variables: <none>

&m: memory

Pr[M.f() @ &m : res] <= 1%r / 2%r
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then running

byphoare (_ : true ==> res).

produces the goals

Type variables: <none>

&m: memory

pre = true

M.f
[<=] 1%r / 2%r

post = res

and

Type variables: <none>

&m: memory

true

and

Type variables: <none>

&m: memory

forall _, true

FiXme Fatal: It’s confusing how the third goal has been simplified, but not pruned.
Given the lemma

lemma M_f : phoare[M.f : true ==> res] <= (1%r / 2%r).

if the current goal is

Type variables: <none>

&m: memory

Pr[M.f() @ &m : res] <= 1%r / 2%r

then running

byphoare M_f.

produces the goals

Type variables: <none>

&m: memory

true

and

Type variables: <none>

&m: memory

forall _, true
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And, if the current goal is

Type variables: <none>

&m: memory

Pr[M.f() @ &m : res] <= 1%r / 2%r

then running

byphoare.

produces the goals

Type variables: <none>

&m: memory

pre = true

M.f
[<=] 1%r / 2%r

post = res

and

Type variables: <none>

&m: memory

true

and

Type variables: <none>

&m: memory

forall _, true

bypr⊚

Syntax: bypr e1 e2. If the goal’s conclusion has the form

equiv[M.p ~ N.q : P ==> Q],

and the ei are expressions of the same type possibily involving memories &1 and &2 for M.p and
N.q, respectively, then reduce the goal to two subgoals:

• One whose conclusion says that for all memories &1 and &2 for M.p and N.q, if e1 = e2,
then Q holds; and

• One whose conclusion says that, for all memories &1 and &2 for M.p and N.q and values a
of the common type of the ei, if P holds, then the probability of running M.p in memory &1
and with arguments consisting of the values of its formal parameters in &1 and terminating in
a memory in which the value of e1 (replacing references to &1 with reference to this memory)
is a is the same as the probability of running N.q in memory &2 and with arguments
consisting of the values of its formal parameters in &2 and terminating in a memory in
which the value of e2 (replacing references to &2 with reference to this memory) is a.

For example, consider the modules
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module M = {
var x : bool
proc f(y : bool) : bool = {

var b : bool;
b <$ {0,1};
return b /\ y;

}
}.

module N = {
var x : bool
proc f(y : bool) : bool = {

var b, b' : bool;
b <$ {0,1};
b' <$ {0,1};
return (b ^^ b') /\ y;

}
}.

If the current goal is

Type variables: <none>

pre = ={y} /\ M.x{1} = N.x{2}

M.f ~ N.f

post = (res{1} /\ M.x{1}) = (res{2} /\ N.x{2})

then running

bypr (res, M.x){1} (res, N.x){2}.

produces the goals

Type variables: <none>

forall &1 &2 (a : bool * bool),
(res{1}, M.x{1}) = a =>
(res{2}, N.x{2}) = a => (res{1} /\ M.x{1}) = (res{2} /\ N.x{2})

and

Type variables: <none>

forall &1 &2 (a : bool * bool),
={y} /\ M.x{1} = N.x{2} =>
Pr[M.f(y{1}) @ &1 : (res, M.x) = a] =
Pr[N.f(y{2}) @ &2 : (res, N.x) = a]

Syntax: bypr. If the goal’s conclusion has the form

hoare[M.p : P ==> Q],

then reduce the goal to one whose conclusion says that, for all memories &m for M.p such that
P{m} holds, the probability of running M.p in memory &m and with arguments consisting of the
values of its formal parameters in &m and terminating in a memory satisfying !Q is 0.

For example, consider the module
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module M = {
var x : bool
proc f(y : bool) : bool = {

var z : bool;
z <$ {0,1};
return x /\ y /\ z;

}
}.

If the current goal is

Type variables: <none>

pre = !y \/ !M.x

M.f

post = !res

then running

bypr.

produces the goal

Type variables: <none>

forall &m, !y{m} \/ !M.x{m} => Pr[M.f(y{m}) @ &m : ! !res] = 0%r

exists*⊚

Syntax: exists* e1, . . ., en. If the goal’s conclusion is a pRHL, HL or pHL judgment or
statement judgements and the ei are well-typed expressions typically involving program variables
(in the pRHL case, the expressions will refer to memories &1 and &2), then change the conclusion’s
precondition P to

exists (x1 . . . xn), x1 = e2 /\ . . . /\ xn = en /\ P .

The tactic can be used in conjunction with elim* (p. 166) when handling a procedure call using
a lemma that refers to initial values of program variables. See elim* (p. 166) for an example of
this.

For example, if the current goal is

Type variables: <none>

pre = ={y} /\ M.x{1} = N.x{2}

M.f ~ N.f

post = ={res}

then running

exists* (y + 1){1}, (N.x{2} - y{1}).

produces the goal
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Type variables: <none>

pre =
exists (f f0 : int),

(f = y{1} + 1 /\ f0 = N.x{2} - y{1}) /\
={y} /\ M.x{1} = N.x{2}

M.f ~ N.f

post = ={res}

If the current goal is

Type variables: <none>

&1 (left ) : M.f
&2 (right) : N.f

pre = ={y} /\ M.x{1} = N.x{2}

z <− (-M.x) + y (1) z <− N.x - y

post = M.x{1} + z{1} + M.x{1} = y{2} + z{2} + y{2}

then running

exists* (y + 1){1}, (N.x{2} - y{1}).

produces the goal

Type variables: <none>

&1 (left ) : M.f
&2 (right) : N.f

pre =
exists (f f0 : int),

(f = y{1} + 1 /\ f0 = N.x{2} - y{1}) /\
={y} /\ M.x{1} = N.x{2}

z <− (-M.x) + y (1) z <− N.x - y

post = M.x{1} + z{1} + M.x{1} = y{2} + z{2} + y{2}

If the current goal is

Type variables: <none>

pre = 0 <= y /\ 0 <= M.x

M.f

post = 0 <= res

then running

exists* (y + M.x - 2).
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produces the goal

Type variables: <none>

pre = exists (f : int), f = y + M.x - 2 /\ 0 <= y /\ 0 <= M.x

M.f

post = 0 <= res

If the current goal is

Type variables: <none>

Context : M.f

pre = 0 <= y /\ 0 <= M.x

(1) z <− (-M.x) + y

post = 0 <= M.x + z + M.x

then running

exists* (y + M.x - 2).

produces the goal

Type variables: <none>

Context : M.f

pre = exists (f : int), f = y + M.x - 2 /\ 0 <= y /\ 0 <= M.x

(1) z <− (-M.x) + y

post = 0 <= M.x + z + M.x

elim*⊚

If the goal’s conclusion is a pRHL, HL or pHL judgement or statement judgement whose
precondition has the form

exists (x1 . . . xn), P ,

then remove the existential quantification from the precondition, and universally quantify the
judgement or statement judgement by the xi.
Such existential quantifications may be introduced by sp (p. 82) or exists* (p. 164).

For example, if the current goal is

Type variables: <none>

pre =
exists (f f0 : int),

(f = y{1} + 1 /\ f0 = N.x{2} - y{1}) /\
={y} /\ M.x{1} = N.x{2}

M.f ~ N.f
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post = ={res}

then running

elim*.

produces the goal

Type variables: <none>

forall (f f0 : int),
equiv[ M.f ~ N.f :

(f = y{1} + 1 /\ f0 = N.x{2} - y{1}) /\
={y} /\ M.x{1} = N.x{2} ==> ={res}]

If the current goal is

Type variables: <none>

&1 (left ) : M.f
&2 (right) : N.f

pre =
exists (f f0 : int),

(f = y{1} + 1 /\ f0 = N.x{2} - y{1}) /\
={y} /\ M.x{1} = N.x{2}

z <− (-M.x) + y (1) z <− N.x - y

post = M.x{1} + z{1} + M.x{1} = y{2} + z{2} + y{2}

then running

elim*.

produces the goal

Type variables: <none>

forall (f f0 : int),
equiv[ M.f.z <− (-M.x{hr}) + M.f.y{hr} ~ N.f.z <−

N.x{hr} - N.f.y{hr} :
(f = y{1} + 1 /\ f0 = N.x{2} - y{1}) /\
={y} /\ M.x{1} = N.x{2} ==>
M.x{1} + z{1} + M.x{1} = y{2} + z{2} + y{2}]

If the current goal is

Type variables: <none>

pre = exists (f : int), f = y + M.x - 2 /\ 0 <= y /\ 0 <= M.x

M.f

post = 0 <= res

then running

elim*.
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produces the goal

Type variables: <none>

forall (f : int),
hoare[ M.f : f = y + M.x - 2 /\ 0 <= y /\ 0 <= M.x ==> 0 <= res]

If the current goal is

Type variables: <none>

Context : M.f

pre = exists (f : int), f = y + M.x - 2 /\ 0 <= y /\ 0 <= M.x

(1) z <− (-M.x) + y

post = 0 <= M.x + z + M.x

then running

elim*.

produces the goal

Type variables: <none>

forall (f : int),
hoare[ z <− (-M.x) + y :

f = y + M.x - 2 /\ 0 <= y /\ 0 <= M.x ==> 0 <= M.x + z + M.x]

As a more realistic example, consider the module

module M = {
proc f(x : int) : int = {

return x + 1;
}
proc g(x : int) : int = {

var y : int;
y <@ f(x);
return y;

}
}.

and lemma

lemma M_f (x' : int) : hoare[M.f : x' = x ==> res = x' + 1].

If the current goal is

Type variables: <none>

Context : M.g

pre = x = -1

(1) y <@ M.f(x)

post = y = 0
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then running

exists* x.

produces the goal

Type variables: <none>

Context : M.g

pre = exists (x0 : int), x0 = x /\ x = -1

(1) y <@ M.f(x)

post = y = 0

from which running

elim*=> x'.

produces the goal

Type variables: <none>

x': int

Context : M.g

pre = x' = x /\ x = -1

(1) y <@ M.f(x)

post = y = 0

from which running

call (M_f x').

produces the goal

Type variables: <none>

x': int

Context : M.g

pre = x' = x /\ x = -1

post =
x' = x && forall (result : int), result = x' + 1 => result = 0

hoare⊚

FiXme Fatal: Update waiting for overhaul of pHL.
Syntax: hoare <spec>. Derives a null probability from a HL judgement on the procedure
involved. hoare can also be used to derive pHL judgments and certain probability inequalities by
automatically applying conseq (p. 136).
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Examples:

hoare

{true} f {¬Q}
Pr[m, f (⃗a) : Q] = 0

hoare

{P} f {¬Q}
{P} f {Q} ≤ 0

phoare split⊚

FiXme Fatal: Update waiting for overhaul of pHL.
Syntax: phoare split δA δB δAB. Splits a pHL judgment whose postcondition is a conjunction
or disjunction into three pHL judgments following the definition of the probability of a disjunction
of events.

Examples:

phoare split δA δB δAB [pHL]

δA + δB − δAB ⋄ δ {P} c {A} ⋄ δA {P} c {B} ⋄ δB {P} c {A ∧B} ⋄−1 δAB

{P} c {A ∨B} ⋄ δ

phoare split δA δB δAB [pHL]

δA + δB − δAB ⋄ δ {P} c {A} ⋄ δA {P} c {B} ⋄ δB {P} c {A ∨B} ⋄−1 δAB

{P} c {A ∧B} ⋄ δ

Syntax: phoare split ! δ⊤ δ!. Splits a pHL judgment into two judgments whose postcondition
are true and the negation of the original postcondition, respectively.

Examples:

phoare split ! δ⊤ δ! [pHL]

δ⊤ − δ! ⋄ δ {P} c {true} ⋄ δ⊤ {P} c {!Q} ⋄−1 δ!

{P} c {Q} ⋄ δ

Syntax: phoare split δA δ!A: A. Splits a pHL judgment following an event A.

Examples:

phoare split δA δ!A: A [pHL]

δA + δ!A ⋄ δ {P} c {Q ∧A} ⋄ δA {P} c {Q ∧ ¬A} ⋄ δ!A

{P} c {Q} ⋄ δ

3.4.4 Automated Tactics
exfalso⊚

Syntax: exfalso. Combines conseq (p. 136), byequiv (p. 149), byphoare (p. 156), hoare (p. 169)
and bypr (p. 162) to strengthen the precondition into false and discharge the resulting trivial
goal.
For example, if the current goal is
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Type variables: <none>

&1 (left ) : M.f
&2 (right) : N.f

pre = true

i <− 0 (1--) i <− 0
j <− 0 (2--) j <− 0
while (i <= 0) { (3--) while (i <= 0) {

i <− i - 1 (3.1) i <− i - 1
} (3--) }
while (j < 10) { (4--) while (j < 20) {

i <− i + 2 (4.1) i <− i + 3
j <− j + 1 (4.2) j <− j + 1

} (4--) }

post = ={i}

then running
seq 3 3 : (={i} /\ 0 < i{1} /\ i{1} <= 0).

produces the goals
Type variables: <none>

&1 (left ) : M.f
&2 (right) : N.f

pre = true

i <− 0 (1--) i <− 0
j <− 0 (2--) j <− 0
while (i <= 0) { (3--) while (i <= 0) {

i <− i - 1 (3.1) i <− i - 1
} (3--) }

post = ={i} /\ 0 < i{1} /\ i{1} <= 0

and
Type variables: <none>

&1 (left ) : M.f
&2 (right) : N.f

pre = ={i} /\ 0 < i{1} /\ i{1} <= 0

while (j < 10) { (1--) while (j < 20) {
i <− i + 2 (1.1) i <− i + 3
j <− j + 1 (1.2) j <− j + 1

} (1--) }

post = ={i}

The first of these goals is solved by running
while (={i} /\ i{1} <= 0); auto; smt.
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And running

exfalso.

reduces the second of these goals to

Type variables: <none>

forall &1 &2, ={i} /\ 0 < i{1} /\ i{1} <= 0 => false

which smt solves.

FiXme Fatal: Perhaps need other examples?

auto⊚

If the current goal is a pRHL, HL or pHL statement judgement, uses various program logic
tactics in an attempt to reduce the goal to a simpler one. Never fails, but may fail to make any
progress.
FiXme Fatal: Need better description of when the tactic is applicable and how the
tactic works!

For example, if the current goal is

Type variables: <none>

Context : M.f

pre = 1 <= y < x

(1--) if (y < x) {
(1.1) z1 <− x
(1.2) x <− y
(1.3) y <− z1
(1--) }
(2--) z1 <$ [x..y]
(3--) z2 <$ [x - 1..y + 1]

post = 0 <= z1 + z2

then running

auto.

produces the goal

Type variables: <none>

forall &hr,
1 <= y{hr} < x{hr} =>
if y{hr} < x{hr} then

forall (z1 : int),
z1 \in [y{hr}..x{hr}] =>
forall (z2 : int),

z2 \in [y{hr} - 1..x{hr} + 1] => 0 <= z1 + z2
else

forall (z1 : int),
z1 \in [x{hr}..y{hr}] =>
forall (z2 : int),

z2 \in [x{hr} - 1..y{hr} + 1] => 0 <= z1 + z2
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which progress;smt is able to solve. If the current goal is
Type variables: <none>

Context : N.f

pre = 1 <= y < x

(1) z1 <$ [x..y]
(2) x <− x - 1
(3) y <− y + 1
(4) z2 <$ [x..y]
(5) x <− x - 1
(6) y <− y + 1

post = 0 <= z1 + z2

then running
auto.

produce a single goal, which smt is able to solve. And, if the current goal is
Type variables: <none>

&1 (left ) : M.f
&2 (right) : N.f

pre = ={x, y} /\ 1 < x{1} <= y{2}

if (y < x) { (1--) z1 <$ [x..y]
z1 <− x (1.1)
x <− y (1.2)
y <− z1 (1.3)

} (1--)
z1 <$ [x..y] (2--) x <− x - 1
z2 <$ [x - 1..y + 1] (3--) y <− y + 1

(4--) z2 <$ [x..y]
(5--) x <− x - 1
(6--) y <− y + 1

post = z1{1} + z2{1} = z1{2} + z2{2}

then running
auto.

produce a single goal, which smt is able to solve.

sim⊚

sim attempts to solve a goal whose conclusion is a pRHL judgement or statement judgement
by working backwards, propagating and extending a conjunction of equalties between variables
of the two programs, verifying that the conclusion’s precondition implies the final conjuction
of equalities. It’s capable of working backwards through if and while statements and handing
random assignments, but only when the programs are sufficiently similar (thus its name).
Sometimes this process only partly succeeds, leaving a statement judgement whose programs are
prefixes of the original programs.
Syntax: sim. Without any arguments, sim attemps to infer the conjuction of program variable
equalities from the conclusion’s postcondition.
For example, if the current goal is
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Type variables: <none>

&1 (left ) : M.f
&2 (right) : N.f

pre = x{1} = N.u{2} /\ y{1} + 1 = N.v{2}

i <− 0 (1--) j <− 0
y <− y + 1 (2--) while (j < N.v) {

(2.1) N.u <− N.u + N.u
(2.2) j <− j + 1
(2--) }

while (i < y) { (3--)
x <− x + x (3.1)
i <− i + 1 (3.2)

} (3--)

post = x{1} = N.u{2}

then running

sim.

produces the goal

Type variables: <none>

&1 (left ) : M.f
&2 (right) : N.f

pre = x{1} = N.u{2} /\ y{1} + 1 = N.v{2}

i <− 0 (1) j <− 0
y <− y + 1 (2)

post = x{1} = N.u{2} /\ y{1} = N.v{2} /\ i{1} = j{2}

which auto is able to solve.

Syntax: sim / ϕ : eqs. One may give the starting conjuction, eqs, of equalities explicitly, and
may also specifiy an invariant ϕ on the global variables of the programs.

For example, if the current goal is

Type variables: <none>

&1 (left ) : M.f
&2 (right) : N.f

pre = x{1} = N.u{2} /\ y{1} + 1 = N.v{2} /\ 0 <= y{1}

i <− 0 (1--) j <− 0
y <− y + 1 (2--) while (j < N.v) {

(2.1) N.u <− N.u + N.u
(2.2) j <− j + 1
(2--) }

while (i < y) { (3--)
x <− x + x (3.1)
i <− i + 1 (3.2)
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} (3--)

post = x{1} = N.u{2} /\ 1 < N.v{2} + 1

then running

sim / (0 < N.v{2}) : (x{1} = N.u{2} /\ y{1} = N.v{2}).

produces the goals

Type variables: <none>

forall &1 &2,
(x{1} = N.u{2} /\ y{1} = N.v{2}) /\ 0 < N.v{2} =>
x{1} = N.u{2} /\ 1 < N.v{2} + 1

and

Type variables: <none>

&1 (left ) : M.f
&2 (right) : N.f

pre = x{1} = N.u{2} /\ y{1} + 1 = N.v{2} /\ 0 <= y{1}

i <− 0 (1) j <− 0
y <− y + 1 (2)

post =
(x{1} = N.u{2} /\ y{1} = N.v{2} /\ i{1} = j{2}) /\ 0 < N.v{2}

which smt and auto;smt, respectively, are able to solve.

Syntax: sim proceq1 . . . proceq1 / ϕ : eqs. In its most general form, one may also supply a sequence
of procedure global equality specifications of the form

(M.p ~ N.q : eqs),

where eqs is a conjuction of global variable equalities. When sim encounters a pair of procedure
calls consisting of a call to M.p in the first program and N.q in the second program, it will generate
a subgoal whose conclusion is a pRHL judgment between M.p and N.q, whose precondition
assumes equality of its arguments, eqs and ϕ, and whose postcondition requires equality of the
calls’ results, eqs and ϕ.
One may also replace M.p ~ N.q by _, meaning that the same conjunction of global variable
equalities is used for all procedure calls.

For example, if the current goal is

Type variables: <none>

&1 (left ) : M.h
&2 (right) : N.h

pre = true

k <− 0 (1--) k <− 0
M.x <− 0 (2--) N.x <− 0
M.i <− 0 (3--) N.i <− 0
M.j <− 0 (4--) N.j <− 0
while (k < 10) { (5--) while (k < 10) {
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M.f() (5.1) N.f()
k <− k + 1 (5.2) k <− k + 1

} (5--) }
while (k < 20) { (6--) while (k < 20) {

M.g() (6.1) N.g()
k <− k + 1 (6.2) k <− k + 1

} (6--) }

post = `|M.x{1} + k{1}| = `|N.x{2} - k{2}|

then running
sim (M.f ~ N.f : M.i{1} = N.i{2})

(M.g ~ N.g : M.j{1} = N.j{2}) /
(M.x{1} = -N.x{2}) : (={k}).

produces the goals
Type variables: <none>

forall &1 &2,
={k} /\ M.x{1} = -N.x{2} => `|M.x{1} + k{1}| = `|N.x{2} - k{2}|

and
Type variables: <none>

pre = true /\ M.i{1} = N.i{2} /\ M.x{1} = -N.x{2}

M.f ~ N.f

post = ={res} /\ M.i{1} = N.i{2} /\ M.x{1} = -N.x{2}

and
Type variables: <none>

pre = true /\ M.j{1} = N.j{2} /\ M.x{1} = -N.x{2}

M.g ~ N.g

post = ={res} /\ M.j{1} = N.j{2} /\ M.x{1} = -N.x{2}

and
Type variables: <none>

&1 (left ) : M.h
&2 (right) : N.h

pre = true

k <− 0 (1) k <− 0
M.x <− 0 (2) N.x <− 0

post = ={k} /\ M.x{1} = -N.x{2}

which smt, proc;auto;smt, proc;auto;smt and auto, respectively, are able to solve.
And, if the current goal is
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Type variables: <none>

&1 (left ) : M.h
&2 (right) : N.h

pre = true

k <− 0 (1--) k <− 0
M.x <− 0 (2--) N.x <− 0
M.i <− 0 (3--) N.i <− 0
M.j <− 0 (4--) N.j <− 0
while (k < 10) { (5--) while (k < 10) {

M.f() (5.1) N.f()
k <− k + 1 (5.2) k <− k + 1

} (5--) }
while (k < 20) { (6--) while (k < 20) {

M.g() (6.1) N.g()
k <− k + 1 (6.2) k <− k + 1

} (6--) }

post = `|M.x{1} + k{1}| = `|N.x{2} - k{2}|

then running

sim (_ : M.i{1} = N.i{2} /\ M.j{1} = N.j{2}) /
(M.x{1} = -N.x{2}) : (={k}).

produces the goals

Type variables: <none>

forall &1 &2,
={k} /\ M.x{1} = -N.x{2} => `|M.x{1} + k{1}| = `|N.x{2} - k{2}|

and

Type variables: <none>

pre =
true /\ (M.j{1} = N.j{2} /\ M.i{1} = N.i{2}) /\ M.x{1} = -N.x{2}

M.f ~ N.f

post =
={res} /\
(M.j{1} = N.j{2} /\ M.i{1} = N.i{2}) /\ M.x{1} = -N.x{2}

and

Type variables: <none>

pre =
true /\ (M.j{1} = N.j{2} /\ M.i{1} = N.i{2}) /\ M.x{1} = -N.x{2}

M.g ~ N.g

post =
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={res} /\
(M.j{1} = N.j{2} /\ M.i{1} = N.i{2}) /\ M.x{1} = -N.x{2}

and

Type variables: <none>

&1 (left ) : M.h
&2 (right) : N.h

pre = true

k <− 0 (1) k <− 0
M.x <− 0 (2) N.x <− 0

post = ={k} /\ M.x{1} = -N.x{2}

which smt, proc;auto;smt, proc;auto;smt and auto, respectively, are able to solve.

3.4.5 Advanced Tactics
fel⊚

Syntax: fel init ctr stepub bound bad conds inv. “fel” stands for “failure event lemma”. To use
this tactic, one must load the theory FelTactic. To be applicable, the current goal’s conclusion
must have the form

Pr[M.p(a1, . . ., ar) @ &m : ϕ] <= ub.

Here:

• ub (“upper bound”) is an expression of type real.

• ctr is the counter, an expression of type int involving program variables.

• bad is an expression of type bool involving program variables. It is the “bad” or “failure”
event.

• inv is an optional invariant on program variables; if it’s omitted, true is used.

• init is a natural number no bigger than the number of statements in M .p. It is the length
of the initial part of the procedure that “initializes” the failure event lemma—causing ctr
to become 0 and bad to become false and establishing inv. The non-initialization part
of the procedure may not directly use the program variables on which ctr , bad and inv
depend. These variables may only be modified by concrete procedures M.p may directly or
indirectly call—such procedures are called oracle procedures. If M.p directly or indirectly
calls an abstract procedure, there must be a module constraint saying that the abstract
procedure may not modify the program variables determining the values of ctr , bad and
inv or that are used by the oracle procedures.

• bound is an expression of type int. It must be the case that

ϕ /\ inv => bad /\ ctr <= bound.

• conds is a list of procedure preconditions

[N1.p1 : ϕ1; . . .; Nl.pl : ϕl],
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where the Ni.pi are procedures, and the ϕi are expressions of type bool involving program
variables and procedure parameters. When a procedure’s precondition is true, it must
increase the counter’s value; when it isn’t true, it must not decrease the counter’s value,
and must preserve the value of bad. Whether a procedure’s precondition holds or not, the
invariant inv must be preserved.

• stepub is a function of type int −> real, providing an upper bound as a function of the
counter’s current value. When a procedure’s precondition, the invariant inv, !bad and
0 <= ctr < bound hold, the probability that bad becomes set during that call must be upper-
bounded by the application of stepub to the counter’s value. In addition, it must be the
case that the summation of stepub i, as i ranges from 0 to bound − 1, is upper-bounded by
ub.

The subgoals generated by fel enforce the above rules. The best way to understand the details
is via an example.

For example, consider the declarations

op upp : { int | 1 <= upp } as ge1_upp.
op n : { int | 0 <= n } as ge0_n.

module type OR = {
proc init() : unit
proc gen() : bool
proc add(_ : int) : unit

}.

module Or : OR = {
var won : bool
var gens : int list

proc init() : unit = {
won <− false;
gens <− [];

}

proc gen() : bool = {
var x : int;
if (size gens < n) {

x <$ [1 .. upp];
if (mem gens x) {

won <− true;
}
gens <− x :: gens;

}
return won;

}

proc add(x : int) : unit = {
if (size gens < n /\ 1 <= x <= upp) {

gens <− x :: gens;
}

}
}.

module type ADV (O : OR) = {
proc * main() : unit {O.gen O.add}

}.

module G(Adv : ADV) = {
proc main() : unit = {
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Or.init();
Adv(Or).main();

}
}.

Here, the oracle has a boolean variable won, which is the bad event. It also has a list of integers
gens, all of which are within the range 1 to upp, inclusive—the integers “generated” so far. The
counter is the size of gens. The procedure gen randomly generates such an integer, setting won to
true if the integer was previously generated. And the procedure add adds a new integer to the
list of generated integers, without possibily setting bad. Both gen and add do nothing when the
counter reaches the bound n. The adversary has access to both gen and bad.
If the current goal is

Type variables: <none>

Adv: ADV{Or}
&m: memory

Pr[G(Adv).main() @ &m : Or.won] <= (n * (n - 1))%r / (2 * upp)%r

then running

fel
1
(size Or.gens)
(fun ctr => ctr%r * (1%r / upp%r))
n
Or.won
[Or.gen : (size Or.gens < n);
Or.add : (size Or.gens < n /\ 1 <= x <= upp)]

(size Or.gens <= n).

produces the goals

Type variables: <none>

Adv: ADV{Or}
&m: memory

bigi predT (fun (ctr : int) => ctr%r * (1%r / upp%r)) 0 n <=
(n * (n - 1))%r / (2 * upp)%r

and

Type variables: <none>

Adv: ADV{Or}
&m: memory

forall &m0,
Or.won{m0} =>
size Or.gens{m0} <= n => Or.won{m0} /\ size Or.gens{m0} <= n

and

Type variables: <none>

Adv: ADV{Or}
&m: memory

Context : G(Adv).main



CHAPTER 3. TACTICS 181

pre = tt = tt /\ Or.gens = Or.gens{m} /\ Or.won = Or.won{m}

(1) Or.init()

post = (!Or.won /\ size Or.gens = 0) /\ size Or.gens <= n

and

Type variables: <none>

Adv: ADV{Or}
&m: memory

pre =
(((0 <= size Or.gens /\ size Or.gens < n) /\ !Or.won) /\
size Or.gens <= n) /\

size Or.gens < n /\ 1 <= x <= upp

Or.add
[<=] size Or.gens%r * (1%r / upp%r)

post = Or.won

and

Type variables: <none>

Adv: ADV{Or}
&m: memory

forall (c : int),
hoare[ Or.add :

((size Or.gens < n /\ 1 <= x <= upp) /\ c = size Or.gens) /\
size Or.gens <= n ==>
c < size Or.gens /\ size Or.gens <= n]

and

Type variables: <none>

Adv: ADV{Or}
&m: memory

forall (b : bool) (c : int),
hoare[ Or.add :

(! (size Or.gens < n /\ 1 <= x <= upp) /\
Or.won = b /\ size Or.gens = c) /\

size Or.gens <= n ==>
(Or.won = b /\ c <= size Or.gens) /\ size Or.gens <= n]

and

Type variables: <none>

Adv: ADV{Or}
&m: memory

pre =
(((0 <= size Or.gens /\ size Or.gens < n) /\ !Or.won) /\
size Or.gens <= n) /\

size Or.gens < n
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Or.gen
[<=] size Or.gens%r * (1%r / upp%r)

post = Or.won

and

Type variables: <none>

Adv: ADV{Or}
&m: memory

forall (c : int),
hoare[ Or.gen :

(size Or.gens < n /\ c = size Or.gens) /\
size Or.gens <= n ==>
c < size Or.gens /\ size Or.gens <= n]

and

Type variables: <none>

Adv: ADV{Or}
&m: memory

forall (b : bool) (c : int),
hoare[ Or.gen :

(! size Or.gens < n /\ Or.won = b /\ size Or.gens = c) /\
size Or.gens <= n ==>
(Or.won = b /\ c <= size Or.gens) /\ size Or.gens <= n]

eager⊚

eager is a family of tactics for proving pRHL statement judgements of the form

equiv[s1 t1 ~ t2 s2 : P ==> Q],

where the pre- and postconditions P and Q are conjunctions of equalities between program
variables, and the statement sequences si only read and write global variables. Here s1 is in the
“eager” position, and its replacement, s2, is in the “lazy” position. Some of the tactics work with
eager judgements of the form

eager[s1, M.p ~ N.q, s2 : P ==> Q],

where, again, the si only involve global variables, but where P and Q may talk about the
parameters and results of M.p and N.q in the usual way.

The context of our examples is the following EasyCrypt script involving variable incrementation
oracles Or1 and Or2, which only differ in that Or2 keeps a “transcript” of its operation.

module type OR = {
proc init() : unit
proc incr_x() : unit
proc incr_y() : unit
proc incr_xy() : unit
proc incr_yx() : unit
proc loop(n : int) : bool

}.

module Or1 : OR = {
var x, y : int
var b : bool
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proc init() : unit = { x <− 0; y <− 0; b <− true; }
proc incr_x() : unit = { x <− x + 1; }
proc incr_y() : unit = { y <− y + 1; }
proc incr_xy() : unit = { incr_x(); incr_y(); }
proc incr_yx() : unit = { incr_y(); incr_x(); }
proc loop(n : int) : bool = {

while (0 < n) {
if (b) incr_x(); else incr_y();
b <− !b;

}
return !b;

}
}.

module Or2 : OR = {
var x, y : int
var b : bool
var trace : bool list
proc init() : unit = { x <− 0; y <− 0; b <− true; trace <− []; }
proc incr_x() : unit = { x <− x + 1; trace <− trace ++ [true]; }
proc incr_y() : unit = { y <− y + 1; trace <− trace ++ [false]; }
proc incr_xy() : unit = { incr_x(); incr_y(); }
proc incr_yx() : unit = { incr_y(); incr_x(); }
proc loop(n : int) : bool = {

while (0 < n) {
if (b) incr_x(); else incr_y();
b <− !b;

}
return !b;

}
}.

lemma eager_incr :
eager[Or1.incr_x();, Or1.incr_y ~ Or2.incr_y, Or2.incr_x(); :

={x, y}(Or1, Or2) ==> ={x, y}(Or1, Or2)].
proof.
eager proc.
inline *; auto.
qed.

lemma eager_incr_x :
eager[Or1.incr_x(); Or1.incr_y();, Or1.incr_x ~

Or2.incr_x, Or2.incr_y(); Or2.incr_x(); :
={x, y, b}(Or1, Or2) ==> ={x, y, b}(Or1, Or2)].

proof.
proc*.
inline*; auto.
qed.

lemma eager_incr_y :
eager[Or1.incr_x(); Or1.incr_y();, Or1.incr_y ~

Or2.incr_y, Or2.incr_y(); Or2.incr_x(); :
={x, y, b}(Or1, Or2) ==> ={x, y, b}(Or1, Or2)].

proof.
proc*; inline*; auto.
qed.

lemma eager_incr_xy :
eager[Or1.incr_x(); Or1.incr_y();, Or1.incr_xy ~

Or2.incr_xy, Or2.incr_y(); Or2.incr_x(); :
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={x, y, b}(Or1, Or2) ==> ={x, y, b}(Or1, Or2)].
proof.
eager proc.
eager seq 1 1 (incr : Or1.incr_x(); Or1.incr_y(); ~

Or2.incr_y(); Or2.incr_x(); :
={x, y}(Or1, Or2) ==> ={x, y}(Or1, Or2)) :

(={x, y, b}(Or1, Or2)).
eager call eager_incr.
auto.
eager call eager_incr_x; first auto.
eager call eager_incr_y; first auto.
sim.
qed.

lemma eager_incr_yx :
eager[Or1.incr_x(); Or1.incr_y();, Or1.incr_yx ~

Or2.incr_yx, Or2.incr_y(); Or2.incr_x(); :
={x, y, b}(Or1, Or2) ==> ={x, y, b}(Or1, Or2)].

proof.
eager proc.
eager seq 1 1 (incr : Or1.incr_x(); Or1.incr_y(); ~

Or2.incr_y(); Or2.incr_x(); :
={x, y}(Or1, Or2) ==> ={x, y}(Or1, Or2)) :

(={x, y, b}(Or1, Or2));
[eager call eager_incr; first auto |
eager call eager_incr_y; first auto |
eager call eager_incr_x; first auto |
sim].

qed.

lemma eager_loop :
eager[Or1.incr_x(); Or1.incr_y();, Or1.loop ~

Or2.loop, Or2.incr_y(); Or2.incr_x(); :
={n} /\ ={x, y, b}(Or1, Or2) ==>
={res} /\ ={x, y, b}(Or1, Or2)].

proof.
eager proc.
swap{2} 2 2; wp.
eager while (incr : Or1.incr_x(); Or1.incr_y(); ~

Or2.incr_y(); Or2.incr_x(); :
={n} /\ ={x, y, b}(Or1, Or2) ==>
={n} /\ ={x, y, b}(Or1, Or2)).

eager call eager_incr; first auto.
trivial.
swap{2} 2 2; wp.
eager if.
trivial.
move=> &m b'; inline*; auto.
eager call eager_incr_x; first auto.
eager call eager_incr_y; first auto.
sim.
qed.

module type ADV(O : OR) = {
proc * main() : bool {O.incr_x O.incr_y O.incr_xy O.incr_yx O.loop}

}.

module G (Adv : ADV) = {
proc main1() : bool = {

var b : bool;
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Or1.init();
Or1.incr_x(); Or1.incr_y();
b <@ Adv(Or1).main();
return b;

}
proc main2() : bool = {

var b : bool;
Or2.init();
b <@ Adv(Or2).main();
Or2.incr_y(); Or2.incr_x();
return b;

}
}.

lemma eager_adv (Adv <: ADV{Or1, Or2}) :
eager[Or1.incr_x(); Or1.incr_y();, Adv(Or1).main ~

Adv(Or2).main, Or2.incr_y(); Or2.incr_x(); :
={x, y, b}(Or1, Or2) ==> ={res} /\ ={x, y}(Or1, Or2)].

proof.
eager proc (incr : Or1.incr_x(); Or1.incr_y(); ~

Or2.incr_y(); Or2.incr_x(); :
={x, y}(Or1, Or2) ==> ={x, y}(Or1, Or2))

(={x, y, b}(Or1, Or2)).
eager call eager_incr; first auto.
trivial.
trivial.
apply eager_incr_x.
sim.
apply eager_incr_y.
sim.
apply eager_incr_xy.
sim.
apply eager_incr_yx.
sim.
apply eager_loop.
sim.
qed.

lemma G_Adv (Adv <: ADV{Or1, Or2}) :
equiv[G(Adv).main1 ~ G(Adv).main2 :

true ==> ={res} /\ ={x, y}(Or1, Or2)].
proof.
proc.
seq 1 1 : (={x, y, b}(Or1, Or2)); first inline*; auto.
eager call (eager_adv Adv); first auto.
qed.

lemma G_Adv' (Adv <: ADV{Or1, Or2}) :
equiv[G(Adv).main1 ~ G(Adv).main2 :

true ==> ={res} /\ ={x, y}(Or1, Or2)].
proof.
proc.
seq 1 1 : (={x, y, b}(Or1, Or2)); first inline*; auto.
eager (incr : Or1.incr_x(); Or1.incr_y(); ~

Or2.incr_y(); Or2.incr_x(); :
={x, y}(Or1, Or2) ==> ={x, y}(Or1, Or2)) :

(={x, y, b}(Or1, Or2)).
eager call eager_incr; first auto.
auto.
eager proc incr (={x, y, b}(Or1, Or2));
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[trivial | trivial | apply eager_incr_x | sim |
apply eager_incr_y | sim | apply eager_incr_xy | sim |
apply eager_incr_yx | sim | apply eager_loop | sim].

qed.

Syntax: eager proc. Turn a goal whose conclusion is an eager judgement into one whose
conclusion is a pRHL statement judgement in which the eager judgement’s procedures have been
replaced by their bodies. For example, if the current goal is

Type variables: <none>

eager[ Or1.incr_x();, Or1.incr_y ~ Or2.incr_y, Or2.incr_x(
); :
Or1.x{1} = Or2.x{2} /\ Or1.y{1} = Or2.y{2} ==>
Or1.x{1} = Or2.x{2} /\ Or1.y{1} = Or2.y{2}]

then running

eager proc.

produces the goal

Type variables: <none>

&1 (left ) : Or1.incr_y
&2 (right) : Or2.incr_y

pre = Or1.x{1} = Or2.x{2} /\ Or1.y{1} = Or2.y{2}

Or1.incr_x() (1) Or2.y <− Or2.y + 1
Or1.y <− Or1.y + 1 (2) Or2.trace <− Or2.trace ++ [false]

(3) Or2.incr_x()

post = Or1.x{1} = Or2.x{2} /\ Or1.y{1} = Or2.y{2}

Syntax: proc*. Turn a goal whose conclusion is an eager judgement into one whose conclusion is
a pRHL statement judgement in which the eager judgement’s procedures are called, as opposed
to being inlined. For example, if the current goal is

Type variables: <none>

eager[ Or1.incr_x();; Or1.incr_y();, Or1.incr_x ~ Or2.incr_x,
Or2.incr_y();; Or2.incr_x(); :
Or1.x{1} = Or2.x{2} /\
Or1.y{1} = Or2.y{2} /\ Or1.b{1} = Or2.b{2} ==>
Or1.x{1} = Or2.x{2} /\
Or1.y{1} = Or2.y{2} /\ Or1.b{1} = Or2.b{2}]

then running

proc*.

produces the goal

Type variables: <none>

&1 (left ) : Or1.incr_x
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&2 (right) : Or2.incr_x

pre =
Or1.x{1} = Or2.x{2} /\
Or1.y{1} = Or2.y{2} /\ Or1.b{1} = Or2.b{2}

Or1.incr_x() (1) r <@ Or2.incr_x()
Or1.incr_y() (2) Or2.incr_y()
r <@ Or1.incr_x() (3) Or2.incr_x()

post =
Or1.x{1} = Or2.x{2} /\
Or1.y{1} = Or2.y{2} /\ Or1.b{1} = Or2.b{2}

Syntax: eager call p. Here p is a proof term for an eager judgement. If the goal’s conclusion
is a pRHL statement judgement whose programs’ suffixes match the left and right sides of the
eager judgment, then consume those suffixes.

For example, if the current goal is

Type variables: <none>

&1 (left ) : Or1.incr_xy
&2 (right) : Or2.incr_xy

pre = Or1.x{1} = Or2.x{2} /\ Or1.y{1} = Or2.y{2}

Or1.incr_x() (1) Or2.incr_y()
Or1.incr_y() (2) Or2.incr_x()

post = Or1.x{1} = Or2.x{2} /\ Or1.y{1} = Or2.y{2}

then running

eager call eager_incr.

(see the statement of eager_incr, above) produces the goal

Type variables: <none>

&1 (left ) : Or1.incr_xy
&2 (right) : Or2.incr_xy

pre = Or1.x{1} = Or2.x{2} /\ Or1.y{1} = Or2.y{2}

post = Or1.x{1} = Or2.x{2} /\ Or1.y{1} = Or2.y{2}

Syntax: eager seq n1 n2 (H : s1 ~ s2 : A ==> B) : C.
Here, the goal’s conclusion must be a pRHL statement judgement whose left and right programs
begin and end with s1 and s2, respectively. A first subgoal is generated whose conclusion is the
specified pRHL statement judgement, which is made available as H for the subsequent subgoals’s
use. The n1 and n2 must be natural numbers saying how many statements from the part of
the first program following s1 and from the beginning of the second program to put together
with the si in a second pRHL statement judgement subgoal. The remaining statements are put
together with the si in a third pRHL statement judgement subgoal. And there is a final subgoal
whose conclusion is a pRHL statement judgment whose left and right sides are those remaining
statements of the second program only.
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For example, if the current goal is

Type variables: <none>

&1 (left ) : Or1.incr_xy
&2 (right) : Or2.incr_xy

pre =
Or1.x{1} = Or2.x{2} /\
Or1.y{1} = Or2.y{2} /\ Or1.b{1} = Or2.b{2}

Or1.incr_x() (1) Or2.incr_x()
Or1.incr_y() (2) Or2.incr_y()
Or1.incr_x() (3) Or2.incr_y()
Or1.incr_y() (4) Or2.incr_x()

post =
Or1.x{1} = Or2.x{2} /\
Or1.y{1} = Or2.y{2} /\ Or1.b{1} = Or2.b{2}

then running

eager seq 1 1 (incr : Or1.incr_x(); Or1.incr_y(); ~
Or2.incr_y(); Or2.incr_x(); :
={x, y}(Or1, Or2) ==> ={x, y}(Or1, Or2)) :

(={x, y, b}(Or1, Or2)).

produces the goals

Type variables: <none>

&1 (left ) : Or1.incr_xy
&2 (right) : Or2.incr_xy

pre = Or1.x{1} = Or2.x{2} /\ Or1.y{1} = Or2.y{2}

Or1.incr_x() (1) Or2.incr_y()
Or1.incr_y() (2) Or2.incr_x()

post = Or1.x{1} = Or2.x{2} /\ Or1.y{1} = Or2.y{2}

and

Type variables: <none>

incr: equiv[ Or1.incr_x();; Or1.incr_y(); ~ Or2.incr_y();;
Or2.incr_x(); :
Or1.x{1} = Or2.x{2} /\ Or1.y{1} = Or2.y{2} ==>
Or1.x{1} = Or2.x{2} /\ Or1.y{1} = Or2.y{2}]

&1 (left ) : Or1.incr_xy
&2 (right) : Or2.incr_xy

pre =
Or1.x{1} = Or2.x{2} /\
Or1.y{1} = Or2.y{2} /\ Or1.b{1} = Or2.b{2}

Or1.incr_x() (1) Or2.incr_x()
Or1.incr_y() (2) Or2.incr_y()
Or1.incr_x() (3) Or2.incr_x()
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post =
Or1.x{1} = Or2.x{2} /\
Or1.y{1} = Or2.y{2} /\ Or1.b{1} = Or2.b{2}

and

Type variables: <none>

incr: equiv[ Or1.incr_x();; Or1.incr_y(); ~ Or2.incr_y();;
Or2.incr_x(); :
Or1.x{1} = Or2.x{2} /\ Or1.y{1} = Or2.y{2} ==>
Or1.x{1} = Or2.x{2} /\ Or1.y{1} = Or2.y{2}]

&1 (left ) : Or1.incr_xy
&2 (right) : Or2.incr_xy

pre =
Or1.x{1} = Or2.x{2} /\
Or1.y{1} = Or2.y{2} /\ Or1.b{1} = Or2.b{2}

Or1.incr_x() (1) Or2.incr_y()
Or1.incr_y() (2) Or2.incr_y()
Or1.incr_y() (3) Or2.incr_x()

post =
Or1.x{1} = Or2.x{2} /\
Or1.y{1} = Or2.y{2} /\ Or1.b{1} = Or2.b{2}

and

Type variables: <none>

incr: equiv[ Or1.incr_x();; Or1.incr_y(); ~ Or2.incr_y();;
Or2.incr_x(); :
Or1.x{1} = Or2.x{2} /\ Or1.y{1} = Or2.y{2} ==>
Or1.x{1} = Or2.x{2} /\ Or1.y{1} = Or2.y{2}]

&1 (left ) : Or2.incr_xy [programs are in sync]
&2 (right) : Or2.incr_xy

pre = ={Or2.b, Or2.y, Or2.x}

(1) Or2.incr_y()

post = ={Or2.b, Or2.y, Or2.x}

Syntax: eager if. If the goal’s conclusion is a pRHL statement judgement whose left program
consists of s1 followed by a conditional, and whose right program consists of a conditional followed
by s2, reduce the goal to two subgoals using the si together with the “then” and “else” parts
of the conditionals, along with auxiliary subgoals verifying that—even after running s1—the
conditionals’ boolean expressions are equivalent.

For example, if the current goal is

Type variables: <none>

incr: equiv[ Or1.incr_x();; Or1.incr_y(); ~ Or2.incr_y();; Or2.incr_x(
); :
={n} /\
Or1.x{1} = Or2.x{2} /\
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Or1.y{1} = Or2.y{2} /\ Or1.b{1} = Or2.b{2} ==>
={n} /\
Or1.x{1} = Or2.x{2} /\
Or1.y{1} = Or2.y{2} /\ Or1.b{1} = Or2.b{2}]

&1 (left ) : Or1.loop
&2 (right) : Or2.loop

pre =
(={n} /\ Or1.x{1} = Or2.x{2} /\ Or1.y{1} = Or2.y{2} /\ Or1.b{1} = Or2.b{2}) /\
0 < n{1}

Or1.incr_x() (1--) if (Or2.b) {
(1.1) Or2.incr_x()
(1--) } else {
(1?1) Or2.incr_y()
(1--) }

Or1.incr_y() (2--) Or2.incr_y()
if (Or1.b) { (3--) Or2.incr_x()

Or1.incr_x() (3.1)
} else { (3--)

Or1.incr_y() (3?1)
} (3--)

post =
={n} /\
Or1.x{1} = Or2.x{2} /\ Or1.y{1} = Or2.y{2} /\ (!Or1.b{1}) = !Or2.b{2}

then running

eager if.

produces the goals

Type variables: <none>

incr: equiv[ Or1.incr_x();; Or1.incr_y(); ~ Or2.incr_y();; Or2.incr_x(
); :
={n} /\
Or1.x{1} = Or2.x{2} /\
Or1.y{1} = Or2.y{2} /\ Or1.b{1} = Or2.b{2} ==>
={n} /\
Or1.x{1} = Or2.x{2} /\
Or1.y{1} = Or2.y{2} /\ Or1.b{1} = Or2.b{2}]

forall &1 &2,
(={n} /\ Or1.x{1} = Or2.x{2} /\ Or1.y{1} = Or2.y{2} /\ Or1.b{1} = Or2.b{2}) /\
0 < n{1} => Or1.b{1} = Or2.b{2}

and

Type variables: <none>

incr: equiv[ Or1.incr_x();; Or1.incr_y(); ~ Or2.incr_y();; Or2.incr_x(
); :
={n} /\
Or1.x{1} = Or2.x{2} /\
Or1.y{1} = Or2.y{2} /\ Or1.b{1} = Or2.b{2} ==>
={n} /\
Or1.x{1} = Or2.x{2} /\
Or1.y{1} = Or2.y{2} /\ Or1.b{1} = Or2.b{2}]
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forall &m2 (b1 : bool),
hoare[ Or1.incr_x();; Or1.incr_y(); :

((n = n{m2} /\
Or1.x = Or2.x{m2} /\ Or1.y = Or2.y{m2} /\ Or1.b = Or2.b{m2}) /\

0 < n) /\
Or1.b = b1 ==> Or1.b = b1]

and

Type variables: <none>

incr: equiv[ Or1.incr_x();; Or1.incr_y(); ~ Or2.incr_y();; Or2.incr_x(
); :
={n} /\
Or1.x{1} = Or2.x{2} /\
Or1.y{1} = Or2.y{2} /\ Or1.b{1} = Or2.b{2} ==>
={n} /\
Or1.x{1} = Or2.x{2} /\
Or1.y{1} = Or2.y{2} /\ Or1.b{1} = Or2.b{2}]

&1 (left ) : Or1.loop
&2 (right) : Or2.loop

pre =
((={n} /\ Or1.x{1} = Or2.x{2} /\ Or1.y{1} = Or2.y{2} /\ Or1.b{1} = Or2.b{2}) /\
0 < n{1}) /\

Or1.b{hr} = true

Or1.incr_x() (1) Or2.incr_x()
Or1.incr_y() (2) Or2.incr_y()
Or1.incr_x() (3) Or2.incr_x()

post =
={n} /\
Or1.x{1} = Or2.x{2} /\ Or1.y{1} = Or2.y{2} /\ (!Or1.b{1}) = !Or2.b{2}

and

Type variables: <none>

incr: equiv[ Or1.incr_x();; Or1.incr_y(); ~ Or2.incr_y();; Or2.incr_x(
); :
={n} /\
Or1.x{1} = Or2.x{2} /\
Or1.y{1} = Or2.y{2} /\ Or1.b{1} = Or2.b{2} ==>
={n} /\
Or1.x{1} = Or2.x{2} /\
Or1.y{1} = Or2.y{2} /\ Or1.b{1} = Or2.b{2}]

&1 (left ) : Or1.loop
&2 (right) : Or2.loop

pre =
((={n} /\ Or1.x{1} = Or2.x{2} /\ Or1.y{1} = Or2.y{2} /\ Or1.b{1} = Or2.b{2}) /\
0 < n{1}) /\

Or1.b{hr} = false

Or1.incr_x() (1) Or2.incr_y()
Or1.incr_y() (2) Or2.incr_y()
Or1.incr_y() (3) Or2.incr_x()
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post =
={n} /\
Or1.x{1} = Or2.x{2} /\ Or1.y{1} = Or2.y{2} /\ (!Or1.b{1}) = !Or2.b{2}

Syntax: eager while (H : s1 ~ s2 : A ==> B). Like eager if, but working with while loops
instead of conditionals and featuring an explicit, named pRHL statement judgement involving
the si, available as H to the subgoals. The subgoal involving the bodies of the while loops uses
B as its invariant. There is also a subgoal whose conclusion is a pRHL statement judgement
both of whose sides are the body of the second program’s while loop.

For example, if the current goal is

Type variables: <none>

&1 (left ) : Or1.loop
&2 (right) : Or2.loop

pre =
={n} /\
Or1.x{1} = Or2.x{2} /\
Or1.y{1} = Or2.y{2} /\ Or1.b{1} = Or2.b{2}

Or1.incr_x() (1----) while (0 < n) {
(1.1--) if (Or2.b) {
(1.1.1) Or2.incr_x()
(1.1--) } else {
(1.1?1) Or2.incr_y()
(1.1--) }
(1.2--) Or2.b <− !Or2.b
(1----) }

Or1.incr_y() (2----) Or2.incr_y()
while (0 < n) { (3----) Or2.incr_x()

if (Or1.b) { (3.1--)
Or1.incr_x() (3.1.1)

} else { (3.1--)
Or1.incr_y() (3.1?1)

} (3.1--)
Or1.b <− !Or1.b (3.2--)

} (3----)

post =
(!Or1.b{1}) = !Or2.b{2} /\
Or1.x{1} = Or2.x{2} /\
Or1.y{1} = Or2.y{2} /\ Or1.b{1} = Or2.b{2}

then running

eager while (incr : Or1.incr_x(); Or1.incr_y(); ~
Or2.incr_y(); Or2.incr_x(); :
={n} /\ ={x, y, b}(Or1, Or2) ==>
={n} /\ ={x, y, b}(Or1, Or2)).

produces the goals

Type variables: <none>

&1 (left ) : Or1.loop
&2 (right) : Or2.loop
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pre =
={n} /\
Or1.x{1} = Or2.x{2} /\
Or1.y{1} = Or2.y{2} /\ Or1.b{1} = Or2.b{2}

Or1.incr_x() (1) Or2.incr_y()
Or1.incr_y() (2) Or2.incr_x()

post =
={n} /\
Or1.x{1} = Or2.x{2} /\
Or1.y{1} = Or2.y{2} /\ Or1.b{1} = Or2.b{2}

and

Type variables: <none>

incr: equiv[ Or1.incr_x();; Or1.incr_y(); ~ Or2.incr_y();;
Or2.incr_x(); :
={n} /\
Or1.x{1} = Or2.x{2} /\
Or1.y{1} = Or2.y{2} /\ Or1.b{1} = Or2.b{2} ==>
={n} /\
Or1.x{1} = Or2.x{2} /\
Or1.y{1} = Or2.y{2} /\ Or1.b{1} = Or2.b{2}]

forall &1 &2,
={n} /\
Or1.x{1} = Or2.x{2} /\
Or1.y{1} = Or2.y{2} /\ Or1.b{1} = Or2.b{2} =>
0 < n{1} = 0 < n{2}

and

Type variables: <none>

incr: equiv[ Or1.incr_x();; Or1.incr_y(); ~ Or2.incr_y();;
Or2.incr_x(); :
={n} /\
Or1.x{1} = Or2.x{2} /\
Or1.y{1} = Or2.y{2} /\ Or1.b{1} = Or2.b{2} ==>
={n} /\
Or1.x{1} = Or2.x{2} /\
Or1.y{1} = Or2.y{2} /\ Or1.b{1} = Or2.b{2}]

&1 (left ) : Or1.loop
&2 (right) : Or2.loop

pre =
(={n} /\
Or1.x{1} = Or2.x{2} /\
Or1.y{1} = Or2.y{2} /\ Or1.b{1} = Or2.b{2}) /\

0 < n{1}

Or1.incr_x() (1--) if (Or2.b) {
(1.1) Or2.incr_x()
(1--) } else {
(1?1) Or2.incr_y()
(1--) }

Or1.incr_y() (2--) Or2.b <− !Or2.b
if (Or1.b) { (3--) Or2.incr_y()
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Or1.incr_x() (3.1)
} else { (3--)

Or1.incr_y() (3?1)
} (3--)
Or1.b <− !Or1.b (4--) Or2.incr_x()

post =
={n} /\
Or1.x{1} = Or2.x{2} /\
Or1.y{1} = Or2.y{2} /\ Or1.b{1} = Or2.b{2}

and

Type variables: <none>

incr: equiv[ Or1.incr_x();; Or1.incr_y(); ~ Or2.incr_y();;
Or2.incr_x(); :
={n} /\
Or1.x{1} = Or2.x{2} /\
Or1.y{1} = Or2.y{2} /\ Or1.b{1} = Or2.b{2} ==>
={n} /\
Or1.x{1} = Or2.x{2} /\
Or1.y{1} = Or2.y{2} /\ Or1.b{1} = Or2.b{2}]

&1 (left ) : Or2.loop [programs are in sync]
&2 (right) : Or2.loop

pre = ={n, Or2.b, Or2.y, Or2.x}

(1--) if (Or2.b) {
(1.1) Or2.incr_x()
(1--) } else {
(1?1) Or2.incr_y()
(1--) }
(2--) Or2.b <− !Or2.b

post = ={n, Or2.b, Or2.y, Or2.x}

Syntax: eager proc (H : s1 ~ s2 : A ==> B) C | eager H C. This is the form of eager proc
that applies when the procedures M.p and N.q are abstract. The second variant is where the
specified pRHL statement judgement has already been introduced by another eager tactic. There
must be a module restriction saying that the abstract procedures can’t directly interfere with the
global variables on which the si depend. Subgoals are generated for each pair of “oracles” the
abstract procedures are capable of calling, i.e., for each of the procedures that may read/write
the global variables used by the si.

For example, if the current goal is

Type variables: <none>

Adv: ADV{Or1, Or2}

eager[ Or1.incr_x();; Or1.incr_y();, Adv(Or1).main ~
Adv(Or2).main, Or2.incr_y();; Or2.incr_x(); :
Or1.x{1} = Or2.x{2} /\
Or1.y{1} = Or2.y{2} /\ Or1.b{1} = Or2.b{2} ==>
={res} /\ Or1.x{1} = Or2.x{2} /\ Or1.y{1} = Or2.y{2}]

then running

eager proc (incr : Or1.incr_x(); Or1.incr_y(); ~
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Or2.incr_y(); Or2.incr_x(); :
={x, y}(Or1, Or2) ==> ={x, y}(Or1, Or2))

(={x, y, b}(Or1, Or2)).

produces the goals

Type variables: <none>

Adv: ADV{Or1, Or2}

&1 (left ) : Top.
&2 (right) : Top.

pre = Or1.x{1} = Or2.x{2} /\ Or1.y{1} = Or2.y{2}

Or1.incr_x() (1) Or2.incr_y()
Or1.incr_y() (2) Or2.incr_x()

post = Or1.x{1} = Or2.x{2} /\ Or1.y{1} = Or2.y{2}

and

Type variables: <none>

Adv: ADV{Or1, Or2}
incr: equiv[ Or1.incr_x();; Or1.incr_y(); ~ Or2.incr_y();;

Or2.incr_x(); :
Or1.x{1} = Or2.x{2} /\ Or1.y{1} = Or2.y{2} ==>
Or1.x{1} = Or2.x{2} /\ Or1.y{1} = Or2.y{2}]

forall &1 &2,
Or1.x{1} = Or2.x{2} /\
Or1.y{1} = Or2.y{2} /\ Or1.b{1} = Or2.b{2} =>
true /\
Or1.x{1} = Or2.x{2} /\
Or1.y{1} = Or2.y{2} /\ Or1.b{1} = Or2.b{2}

and

Type variables: <none>

Adv: ADV{Or1, Or2}
incr: equiv[ Or1.incr_x();; Or1.incr_y(); ~ Or2.incr_y();;

Or2.incr_x(); :
Or1.x{1} = Or2.x{2} /\ Or1.y{1} = Or2.y{2} ==>
Or1.x{1} = Or2.x{2} /\ Or1.y{1} = Or2.y{2}]

forall &1 &2,
={res} /\
={glob Adv} /\
Or1.x{1} = Or2.x{2} /\
Or1.y{1} = Or2.y{2} /\ Or1.b{1} = Or2.b{2} =>
={res} /\ Or1.x{1} = Or2.x{2} /\ Or1.y{1} = Or2.y{2}

and

Type variables: <none>

Adv: ADV{Or1, Or2}
incr: equiv[ Or1.incr_x();; Or1.incr_y(); ~ Or2.incr_y();;

Or2.incr_x(); :
Or1.x{1} = Or2.x{2} /\ Or1.y{1} = Or2.y{2} ==>
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Or1.x{1} = Or2.x{2} /\ Or1.y{1} = Or2.y{2}]

eager[ Or1.incr_x();; Or1.incr_y();, Or1.incr_x ~ Or2.incr_x,
Or2.incr_y();; Or2.incr_x(); :
true /\
Or1.x{1} = Or2.x{2} /\
Or1.y{1} = Or2.y{2} /\ Or1.b{1} = Or2.b{2} ==>
={res} /\
Or1.x{1} = Or2.x{2} /\
Or1.y{1} = Or2.y{2} /\ Or1.b{1} = Or2.b{2}]

and

Type variables: <none>

Adv: ADV{Or1, Or2}
incr: equiv[ Or1.incr_x();; Or1.incr_y(); ~ Or2.incr_y();;

Or2.incr_x(); :
Or1.x{1} = Or2.x{2} /\ Or1.y{1} = Or2.y{2} ==>
Or1.x{1} = Or2.x{2} /\ Or1.y{1} = Or2.y{2}]

pre = ={Or2.b, Or2.y, Or2.x}

Or2.incr_x ~ Or2.incr_x

post = ={res, Or2.b, Or2.y, Or2.x}

and

Type variables: <none>

Adv: ADV{Or1, Or2}
incr: equiv[ Or1.incr_x();; Or1.incr_y(); ~ Or2.incr_y();;

Or2.incr_x(); :
Or1.x{1} = Or2.x{2} /\ Or1.y{1} = Or2.y{2} ==>
Or1.x{1} = Or2.x{2} /\ Or1.y{1} = Or2.y{2}]

eager[ Or1.incr_x();; Or1.incr_y();, Or1.incr_y ~ Or2.incr_y,
Or2.incr_y();; Or2.incr_x(); :
true /\
Or1.x{1} = Or2.x{2} /\
Or1.y{1} = Or2.y{2} /\ Or1.b{1} = Or2.b{2} ==>
={res} /\
Or1.x{1} = Or2.x{2} /\
Or1.y{1} = Or2.y{2} /\ Or1.b{1} = Or2.b{2}]

and

Type variables: <none>

Adv: ADV{Or1, Or2}
incr: equiv[ Or1.incr_x();; Or1.incr_y(); ~ Or2.incr_y();;

Or2.incr_x(); :
Or1.x{1} = Or2.x{2} /\ Or1.y{1} = Or2.y{2} ==>
Or1.x{1} = Or2.x{2} /\ Or1.y{1} = Or2.y{2}]

pre = ={Or2.b, Or2.y, Or2.x}

Or2.incr_y ~ Or2.incr_y

post = ={res, Or2.b, Or2.y, Or2.x}
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and

Type variables: <none>

Adv: ADV{Or1, Or2}
incr: equiv[ Or1.incr_x();; Or1.incr_y(); ~ Or2.incr_y();;

Or2.incr_x(); :
Or1.x{1} = Or2.x{2} /\ Or1.y{1} = Or2.y{2} ==>
Or1.x{1} = Or2.x{2} /\ Or1.y{1} = Or2.y{2}]

eager[ Or1.incr_x();; Or1.incr_y();, Or1.incr_xy ~ Or2.incr_xy,
Or2.incr_y();; Or2.incr_x(); :
true /\
Or1.x{1} = Or2.x{2} /\
Or1.y{1} = Or2.y{2} /\ Or1.b{1} = Or2.b{2} ==>
={res} /\
Or1.x{1} = Or2.x{2} /\
Or1.y{1} = Or2.y{2} /\ Or1.b{1} = Or2.b{2}]

and

Type variables: <none>

Adv: ADV{Or1, Or2}
incr: equiv[ Or1.incr_x();; Or1.incr_y(); ~ Or2.incr_y();;

Or2.incr_x(); :
Or1.x{1} = Or2.x{2} /\ Or1.y{1} = Or2.y{2} ==>
Or1.x{1} = Or2.x{2} /\ Or1.y{1} = Or2.y{2}]

pre = ={Or2.b, Or2.y, Or2.x}

Or2.incr_xy ~ Or2.incr_xy

post = ={res, Or2.b, Or2.y, Or2.x}

and

Type variables: <none>

Adv: ADV{Or1, Or2}
incr: equiv[ Or1.incr_x();; Or1.incr_y(); ~ Or2.incr_y();;

Or2.incr_x(); :
Or1.x{1} = Or2.x{2} /\ Or1.y{1} = Or2.y{2} ==>
Or1.x{1} = Or2.x{2} /\ Or1.y{1} = Or2.y{2}]

eager[ Or1.incr_x();; Or1.incr_y();, Or1.incr_yx ~ Or2.incr_yx,
Or2.incr_y();; Or2.incr_x(); :
true /\
Or1.x{1} = Or2.x{2} /\
Or1.y{1} = Or2.y{2} /\ Or1.b{1} = Or2.b{2} ==>
={res} /\
Or1.x{1} = Or2.x{2} /\
Or1.y{1} = Or2.y{2} /\ Or1.b{1} = Or2.b{2}]

and

Type variables: <none>

Adv: ADV{Or1, Or2}
incr: equiv[ Or1.incr_x();; Or1.incr_y(); ~ Or2.incr_y();;

Or2.incr_x(); :
Or1.x{1} = Or2.x{2} /\ Or1.y{1} = Or2.y{2} ==>
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Or1.x{1} = Or2.x{2} /\ Or1.y{1} = Or2.y{2}]

pre = ={Or2.b, Or2.y, Or2.x}

Or2.incr_yx ~ Or2.incr_yx

post = ={res, Or2.b, Or2.y, Or2.x}

and

Type variables: <none>

Adv: ADV{Or1, Or2}
incr: equiv[ Or1.incr_x();; Or1.incr_y(); ~ Or2.incr_y();;

Or2.incr_x(); :
Or1.x{1} = Or2.x{2} /\ Or1.y{1} = Or2.y{2} ==>
Or1.x{1} = Or2.x{2} /\ Or1.y{1} = Or2.y{2}]

eager[ Or1.incr_x();; Or1.incr_y();, Or1.loop ~ Or2.loop,
Or2.incr_y();; Or2.incr_x(); :
={n} /\
Or1.x{1} = Or2.x{2} /\
Or1.y{1} = Or2.y{2} /\ Or1.b{1} = Or2.b{2} ==>
={res} /\
Or1.x{1} = Or2.x{2} /\
Or1.y{1} = Or2.y{2} /\ Or1.b{1} = Or2.b{2}]

and

Type variables: <none>

Adv: ADV{Or1, Or2}
incr: equiv[ Or1.incr_x();; Or1.incr_y(); ~ Or2.incr_y();;

Or2.incr_x(); :
Or1.x{1} = Or2.x{2} /\ Or1.y{1} = Or2.y{2} ==>
Or1.x{1} = Or2.x{2} /\ Or1.y{1} = Or2.y{2}]

pre = ={n, Or2.b, Or2.y, Or2.x}

Or2.loop ~ Or2.loop

post = ={res, Or2.b, Or2.y, Or2.x}

Syntax: eager (H : s1 ~ s2 : A ==> B) : C. Reduces a goal whose conclusion is a pRHL
statement judgement of the form

equiv[s1 t1 ~ t2 s2 : P ==> Q],

to an eager judgement, along with a subgoal for the specified pRHL statement judgement H,
plus an auxiliary goal.

For example, if the current goal is

Type variables: <none>

Adv: ADV{Or1, Or2}

&1 (left ) : G(Adv).main1
&2 (right) : G(Adv).main2

pre =
Or1.x{1} = Or2.x{2} /\
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Or1.y{1} = Or2.y{2} /\ Or1.b{1} = Or2.b{2}

Or1.incr_x() (1) b <@ Adv(Or2).main()
Or1.incr_y() (2) Or2.incr_y()
b <@ Adv(Or1).main() (3) Or2.incr_x()

post = ={b} /\ Or1.x{1} = Or2.x{2} /\ Or1.y{1} = Or2.y{2}

then running

eager (incr : Or1.incr_x(); Or1.incr_y(); ~
Or2.incr_y(); Or2.incr_x(); :
={x, y}(Or1, Or2) ==> ={x, y}(Or1, Or2)) :

(={x, y, b}(Or1, Or2)).

produces the goals

Type variables: <none>

Adv: ADV{Or1, Or2}

&1 (left ) : G(Adv).main1
&2 (right) : G(Adv).main2

pre = Or1.x{1} = Or2.x{2} /\ Or1.y{1} = Or2.y{2}

Or1.incr_x() (1) Or2.incr_y()
Or1.incr_y() (2) Or2.incr_x()

post = Or1.x{1} = Or2.x{2} /\ Or1.y{1} = Or2.y{2}

and

Type variables: <none>

Adv: ADV{Or1, Or2}
incr: equiv[ Or1.incr_x();; Or1.incr_y(); ~ Or2.incr_y();;

Or2.incr_x(); :
Or1.x{1} = Or2.x{2} /\ Or1.y{1} = Or2.y{2} ==>
Or1.x{1} = Or2.x{2} /\ Or1.y{1} = Or2.y{2}]

&1 (left ) : G(Adv).main1
&2 (right) : G(Adv).main2

pre =
Or1.x{1} = Or2.x{2} /\
Or1.y{1} = Or2.y{2} /\ Or1.b{1} = Or2.b{2}

post =
Or1.b{1} = Or2.b{2} /\
Or1.y{1} = Or2.y{2} /\ Or1.x{1} = Or2.x{2}

and

Type variables: <none>

Adv: ADV{Or1, Or2}
incr: equiv[ Or1.incr_x();; Or1.incr_y(); ~ Or2.incr_y();;

Or2.incr_x(); :
Or1.x{1} = Or2.x{2} /\ Or1.y{1} = Or2.y{2} ==>
Or1.x{1} = Or2.x{2} /\ Or1.y{1} = Or2.y{2}]
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eager[ Or1.incr_x();; Or1.incr_y();, Adv(Or1).main ~
Adv(Or2).main, Or2.incr_y();; Or2.incr_x(); :
Or1.x{1} = Or2.x{2} /\
Or1.y{1} = Or2.y{2} /\ Or1.b{1} = Or2.b{2} ==>
(Or1.y{1} = Or2.y{2} /\ Or1.x{1} = Or2.x{2}) /\ ={res}]
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Structuring Specifications and
Proofs

4.1 Theories

4.2 Sections
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Chapter 7

Examples

7.1 Hashed ElGamal

7.2 BR93
We’ll work through [BR93].
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